GGH encryption scheme

From formulasearchengine
Jump to navigation Jump to search

In the mathematical area of group theory, the Grigorchuk group or the first Grigorchuk group is a finitely generated group constructed by Rostislav Grigorchuk that provided the first example of a finitely generated group of intermediate (that is, faster than polynomial but slower than exponential) growth. The group was originally constructed by Grigorchuk in a 1980 paper[1] and he then proved in a 1984 paper[2] that this group has intermediate growth, thus providing an answer to an important open problem posed by John Milnor in 1968. The Grigorchuk group remains a key object of study in geometric group theory, particularly in the study of the so-called branch groups and automata groups, and it has important connections with the theory of iterated monodromy groups.[3]

History and generalizations

The growth of a finitely generated group measures the asymptotics, as n of the size of an n-ball in the Cayley graph of the group (that is, the number of elements of G that can be expressed as words of length at most n in the generating set of G). The study of growth rates of finitely generated groups goes back to 1950s and is motivated in part by the notion of volume entropy (that is, the growth rate of the volume of balls) in the universal covering space of a compact Riemannian manifold in differential geometry. It is obvious that the growth rate of a finitely generated group is at most exponential and it was also understood early on that finitely generated nilpotent groups have polynomial growth. In 1968 John Milnor posed a question[4] about the existence of a finitely generated group of intermediate growth, that is, faster than any polynomial function and slower than any exponential function. An important result in the subject is Gromov's theorem on groups of polynomial growth, obtained by Gromov in 1981, which shows that a finitely generated group has polynomial growth if and only if this group has a nilpotent subgroup of finite index. Prior to Grigorchuk's work, there were many results establishing growth dichotomy (that is, that the growth is always either polynomial or exponential) for various classes of finitely generated groups, such as linear groups, solvable groups,[5][6] etc.

Grigorchuk's group G was constructed in a 1980 paper of Rostislav Grigorchuk,[1] where he proved that this group is infinite, periodic and residually finite. In a subsequent 1984 paper[2] Grigorchuk proved that this group has intermediate growth (this result was announced by Grigorchuk in 1983).[7] More precisely, he proved that G has growth b(n) that is faster than exp(n) but slower than exp(ns) where s=log32310.991. The upper bound was later improved by Laurent Bartholdi[8] to s=log2/(log2logη)0.7675, with η3+η2+η=2. A lower bound of exp(n0.504) was proved by Yurii Leonov.[9]

Grigorchuk's group was also the first example of a group that is amenable but not elementary amenable, thus answering a problem posed by Mahlon Day in 1957.[10]

Originally, Grigorchuk's group G was constructed as a group of Lebesgue-measure-preserving transformations on the unit interval, but subsequently simpler descriptions of G were found and it is now usually presented as a group of automorphisms of the infinite regular binary rooted tree. The study of Grigorchuk's group informed in large part the development of the theory of branch groups, automata groups and self-similar groups in the 1990s–2000s and Grigorchuk's group remains a central object in this theory. Recently important connections between this theory and complex dynamics, particularly the notion of iterated monodromy groups, have been uncovered in the work of Volodymyr Nekrashevych.[11] and others.

After Grigorchuk's 1984 paper, there were many subsequent extensions and generalizations,[12][13][14][15] though no improvement on the upper and lower bounds of the growth of the Grigorchuk group; the precise asymptotics of its growth is still unknown. It is conjectured that limnlognlogb(n) on the word growth exist, but even this remains a major open problem.

Definition

Although initially the Grigorchuk group was defined as a group of Lebesgue measure-preserving transformations of the unit interval, at present this group is usually given by its realization as a group of automorphisms of the infinite regular binary rooted tree T2. The tree T2 is realized as the set Σ* of all (including the empty string) finite strings in the alphabet Σ = {0,1}. The empty string Ø is the root vertex of T2 and for a vertex x of T2 the string x0 is the left child of x and the string x1 is the right child of x in T2. The group of all automorphisms Aut(T2) can thus be thought of as the group of all length-preserving permutations σ of Σ* that also respect the initial segment relation, that is such that whenever a string x is an initial segment of a string y then σ(x) is an initial segment of σ(y).

The Grigorchuk group G is then defined as the subgroup of Aut(T2) generated by four specific elements a,b,c,d of Aut(T2), that is G = <a,b,c,d> ≤ Aut(T2), where the automorphisms a,b,c,d of T2 are defined recursively as follows:

  • a(0x) = 1x, a(1x) = 0x for every x in Σ*;
  • b(0x) = 0a(x), b(1x) = 1c(x) for every x in Σ*;
  • c(0x) = 0a(x), c(1x) = 1d(x) for every x in Σ*;
  • d(0x) = 0x, d(1x) = 1b(x) for every x in Σ*.

Thus a swaps the right and left branch trees TL = 0Σ* and TR = 1Σ* below the root vertex Ø and the elements b,c,d can be represented as:

  • b = (a,c),
  • c = (a,d),
  • d = (1,b).

Here b = (a,c) means that b fixes the first level of T2 (that is, it fixes the strings 0 and 1) and that b acts on TL exactly as the automorphism a does on T2 and that b acts on TR exactly as the automorphism c does on T2. The notation c = (a,d) and d = (1,b) is interpreted similarly, where 1 in d = (1,b) means that d acts on TL as the identity map does on T2.

Of the four elements a, b, c, d of Aut(T2) only the element a is defined explicitly and the elements b, c, d are defined inductively (by induction on the length |x| of a string x in Σ* ), that is, level by level.

Basic features of the Grigorchuk group

The following are basic algebraic properties of the Grigorchuk group (see[16] for proofs):

  • The group G is residually finite. Indeed, for every positive integer n let T[n] be the finite subtree of T2 which is the union of the first n levels of and let ρn:G→Aut(T[n]) be the restriction homomorphism that sends every element of G to its restriction to the finite tree T[n]. The groups Aut(T[n]) are finite and for every nontrivial g in G there exists n such that ρn(g) 1.
  • Each of the elements a,b,c,d has order 2 in G, that is, a2 = b2 = c2 = d2 = 1. Thus a = a−1, b = b−1, c = c−1 and d = d−1, so that every element of G can be written as a positive word in a,b,c,d, without using inverses.
  • The elements b,c,d pairwise commute and bc = cb = d, bd = db = c, dc = dc = b, so that <b,c,d>≤G is an abelian group of order 4 isomorphic to the direct product of two cyclic groups of order 2.
  • The group G is generated by a and any two of the three elements b,c,d (e.g. G = <a, b, c>).
  • Using the above recursive notation, in G we have aba = (c,a), aca = (d,a), ada = (b,1).
  • The stabilizer StG[1] in G of the 1st level of T2 is the subgroup generated by b, c, d, aba, aca, ada. The subgroup StG[1] is a normal subgroup of index 2 in G and
G = StG[1]  a StG[1].
  • Every element of G can be written as a (positive) word in a,b,c,d such that this word does not contain any subwords of the form aa, bb, cc, dd, cd, dc, bc, cb, bd, db. Such words are called reduced.
  • A reduced word represents an element of StG[1] if and only if this word involves an even number of occurrences of a.
  • If w is a reduced word of even length involving a positive even number of occurrences of a then there are some words u,v in a,b,c,d (not necessarily reduced) such that in G we have w = (u,v) and such that |u| ≤ |w|/2, |v| ≤ |w|/2. A similar statement holds if w is a reduced word of odd length involving a positive even number of occurrences of a where in the conclusion we have |u| ≤ (|w| + 1)/2, |v| ≤ (|w| + 1)/2.

The last property of G is sometimes called the contraction property. This property plays a key role in many proofs regarding G since it allows to use inductive arguments on the length of a word.

Properties and facts regarding the Grigorchuk group[16]

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

  1. 1.0 1.1 1.2 R. I. Grigorchuk. On Burnside's problem on periodic groups. (Russian) Funktsionalyi Analiz i ego Prilozheniya, vol. 14 (1980), no. 1, pp. 53–54.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya. vol. 48 (1984), no. 5, pp. 939–985.
  3. Volodymyr Nekrashevych. Self-similar groups. Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI, 2005. ISBN 0-8218-3831-8.
  4. John Milnor, Problem No. 5603, American Mathematical Monthly, vol. 75 (1968), pp. 685–686.
  5. John Milnor. Growth of finitely generated solvable groups. Journal of Differential Geometry. vol. 2 (1968), pp. 447–449.
  6. Joseph Rosenblatt. Invariant Measures and Growth Conditions, Transactions of the American Mathematical Society, vol. 193 (1974), pp. 33–53.
  7. One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting

    In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang

    Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules

    Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.

    A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running

    The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more

    There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang
  8. Laurent Bartholdi. Lower bounds on the growth of a group acting on the binary rooted tree. International Journal of Algebra and Computation, vol. 11 (2001), no. 1, pp. 73–88.
  9. Yu. G. Leonov, On a lower bound for the growth of a 3-generator 2-group. Matematicheskii Sbornik, vol. 192 (2001), no. 11, pp. 77–92; translation in: Sbornik Mathematics. vol. 192 (2001), no. 11–12, pp. 1661–1676.
  10. Mahlon M. Day. Amenable semigroups. Illinois Journal of Mathematics, vol. 1 (1957), pp. 509–544.
  11. Volodymyr Nekrashevych, Self-similar groups. Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI, 2005. ISBN 0-8218-3831-8.
  12. Roman Muchnik, and Igor Pak. On growth of Grigorchuk groups. International Journal of Algebra and Computation, vol. 11 (2001), no. 1, pp. 1–17.
  13. Laurent Bartholdi. The growth of Grigorchuk's torsion group. International Mathematics Research Notices, 1998, no. 20, pp. 1049–1054.
  14. Anna Erschler. Critical constants for recurrence of random walks on G-spaces. Université de Grenoble. Annales de l'Institut Fourier, vol. 55 (2005), no. 2, pp. 493–509.
  15. Jeremie Brieussel, Growth of certain groups, Doctoral Dissertation, University of Paris, 2008.
  16. 16.0 16.1 Pierre de la Harpe. Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago. ISBN 0-226-31719-6; Ch. VIII, The first Grigorchuk group, pp. 211–264.
  17. 17.0 17.1 R. I.Grigorchuk, and J. S. Wilson. A structural property concerning abstract commensurability of subgroups. Journal of the London Mathematical Society (2), vol. 68 (2003), no. 3, pp. 671–682.
  18. E. L. Pervova, Everywhere dense subgroups of a group of tree automorphisms. (in Russian). Trudy Matematicheskogo Instituta Imeni V. A. Steklova. vol. 231 (2000), Din. Sist., Avtom. i Beskon. Gruppy, pp. 356–367; translation in: Proceedings of the Steklov Institute of Mathematics, vol 231 (2000), no. 4, pp. 339–350.
  19. I. G. Lysënok, A set of defining relations for the Grigorchuk group. Matematicheskie Zametki, vol. 38 (1985), no. 4, pp. 503–516.