Spinor field

From formulasearchengine
Jump to navigation Jump to search

In mathematics, the binary icosahedral group 2I or <2,3,5> is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by a cyclic group of order 2, and is the preimage of the icosahedral group under the 2:1 covering homomorphism

Spin(3)SO(3)

of the special orthogonal group by the spin group. It follows that the binary icosahedral group is a discrete subgroup of Spin(3) of order 120.

It should not be confused with the full icosahedral group, which is a different group of order 120, and is rather a subgroup of the orthogonal group O(3).

The binary icosahedral group is most easily described concretely as a discrete subgroup of the unit quaternions, under the isomorphism Spin(3)Sp(1) where Sp(1) is the multiplicative group of unit quaternions. (For a description of this homomorphism see the article on quaternions and spatial rotations.)

Elements

Explicitly, the binary icosahedral group is given as the union of the 24 Hurwitz units

{ ±1, ±i, ±j, ±k, ½ ( ±1 ± i ± j ± k ) }

with all 96 quaternions obtained from

½ ( 0 ± i ± φ−1j ± φk )

by an even permutation of coordinates (all possible sign combinations). Here φ = ½ (1 + √5) is the golden ratio.

In total there are 120 elements, namely the unit icosians. They all have unit magnitude and therefore lie in the unit quaternion group Sp(1). The convex hull of these 120 elements in 4-dimensional space form a regular polychoron, known as the 600-cell.

Properties

Central extension

The binary icosahedral group, denoted by 2I, is the universal perfect central extension of the icosahedral group, and thus is quasisimple: it is a perfect central extension of a simple group.

Explicitly, it fits into the short exact sequence

1{±1}2II1.

This sequence does not split, meaning that 2I is not a semidirect product of { ±1 } by I. In fact, there is no subgroup of 2I isomorphic to I.

The center of 2I is the subgroup { ±1 }, so that the inner automorphism group is isomorphic to I. The full automorphism group is isomorphic to S5 (the symmetric group on 5 letters), just as for IA5 - any automorphism of 2I fixes the non-trivial element of the center (1), hence descends to an automorphism of I, and conversely, any automorphism of I lifts to an automorphism of 2I, since the lift of generators of I are generators of 2I (different lifts give the same automorphism).

Superperfect

The binary icosahedral group is perfect, meaning that it is equal to its commutator subgroup. In fact, 2I is the unique perfect group of order 120. It follows that 2I is not solvable.

Further, the binary icosahedral group is superperfect, meaning abstractly that its first two group homology groups vanish: H1(2I;Z)H2(2I;Z)0. Concretely, this means that its abelianization is trivial (it has no non-trivial abelian quotients) and that its Schur multiplier is trivial (it has no non-trivial perfect central extensions). In fact, the binary icosahedral group is the smallest (non-trivial) superperfect group.

The binary icosahedral group is not acyclic, however, as Hn(2I,Z) is cyclic of order 120 for n = 4k+3, and trivial for n > 0 otherwise, Template:Harv.

Isomorphisms

Concretely, the binary icosahedral group is a subgroup of Spin(3), and covers the icosahedral group, which is a subgroup of SO(3). Abstractly, the icosahedral group is isomorphic to the symmetries of the 4-simplex, which is a subgroup of SO(4), and the binary icosahedral group is isomorphic to the double cover of this in Spin(4). Note that the symmetric group S5 does have a 4-dimensional representation (its usual lowest-dimensional irreducible representation as the full symmetries of the (n1)-simplex), and that the full symmetries of the 4-simplex are thus S5, not the full icosahedral group (these are two different groups of order 120).

The binary icosahedral group can be considered as the double cover of the alternating group A5, denoted 2A52I; this isomorphism covers the isomorphism of the icosahedral group with the alternating group A5I, and can be thought of as sitting as subgroups of Spin(4) and SO(4) (and inside the symmetric group S5 and either of its double covers 2S5±, in turn sitting inside either pin group and the orthogonal group Pin±(4)O(4)).

Unlike the icosahedral group, which is exceptional to 3 dimensions, these tetrahedral groups and alternating groups (and their double covers) exist in all higher dimensions.

One can show that the binary icosahedral group is isomorphic to the special linear group SL(2,5) — the group of all 2×2 matrices over the finite field F5 with unit determinant; this covers the exceptional isomorphism of IA5 with the projective special linear group PSL(2,5).

Note also the exceptional isomorphism PGL(2,5)S5, which is a different group of order 120, with the commutative square of SL, GL, PSL, PGL being isomorphic to a commutative square of 2A5,2S5,A5,S5, which are isomorphic to subgroups of the commutative square of Spin(4), Pin(4), SO(4), O(4).

Presentation

The group 2I has a presentation given by

r,s,tr2=s3=t5=rst

or equivalently,

s,t(st)2=s3=t5.

Generators with these relations are given by

s=12(1+i+j+k)t=12(φ+φ1i+j).

Subgroups

The only proper normal subgroup of 2I is the center { ±1 }.

By the third isomorphism theorem, there is a Galois connection between subgroups of 2I and subgroups of I, where the closure operator on subgroups of 2I is multiplication by { ±1 }.

1 is the only element of order 2, hence it is contained in all subgroups of even order: thus every subgroup of 2I is either of odd order or is the preimage of a subgroup of I. Besides the cyclic groups generated by the various elements (which can have odd order), the only other subgroups of 2I (up to conjugation) are:

Relation to 4-dimensional symmetry groups

The 4-dimensional analog of the icosahedral symmetry group Ih is the symmetry group of the 600-cell (also that of its dual, the 120-cell). Just as the former is the Coxeter group of type H3, the latter is the Coxeter group of type H4, also denoted [3,3,5]. Its rotational subgroup, denoted [3,3,5]+ is a group of order 7200 living in SO(4). SO(4) has a double cover called Spin(4) in much the same way that Spin(3) is the double cover of SO(3). Similar to the isomorphism Spin(3) = Sp(1), the group Spin(4) is isomorphic to Sp(1) × Sp(1).

The preimage of [3,3,5]+ in Spin(4) (a four-dimensional analogue of 2I) is precisely the product group 2I × 2I of order 14400. The rotational symmetry group of the 600-cell is then

[3,3,5]+ = ( 2I × 2I ) / { ±1 }.

Various other 4-dimensional symmetry groups can be constructed from 2I. For details, see (Conway and Smith, 2003).

Applications

The coset space Spin(3) / 2I = S3 / 2I is a spherical 3-manifold called the Poincaré homology sphere. It is an example of a homology sphere, i.e. a 3-manifold whose homology groups are identical to those of a 3-sphere. The fundamental group of the Poincaré sphere is isomorphic to the binary icosahedral group, as the Poincaré sphere is the quotient of a 3-sphere by the binary icosahedral group.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro. Template:Refbegin

  • Many property agents need to declare for the PIC grant in Singapore. However, not all of them know find out how to do the correct process for getting this PIC scheme from the IRAS. There are a number of steps that you need to do before your software can be approved.

    Naturally, you will have to pay a safety deposit and that is usually one month rent for annually of the settlement. That is the place your good religion deposit will likely be taken into account and will kind part or all of your security deposit. Anticipate to have a proportionate amount deducted out of your deposit if something is discovered to be damaged if you move out. It's best to you'll want to test the inventory drawn up by the owner, which can detail all objects in the property and their condition. If you happen to fail to notice any harm not already mentioned within the inventory before transferring in, you danger having to pay for it yourself.

    In case you are in search of an actual estate or Singapore property agent on-line, you simply should belief your intuition. It's because you do not know which agent is nice and which agent will not be. Carry out research on several brokers by looking out the internet. As soon as if you end up positive that a selected agent is dependable and reliable, you can choose to utilize his partnerise in finding you a home in Singapore. Most of the time, a property agent is taken into account to be good if he or she locations the contact data on his website. This may mean that the agent does not mind you calling them and asking them any questions relating to new properties in singapore in Singapore. After chatting with them you too can see them in their office after taking an appointment.

    Have handed an trade examination i.e Widespread Examination for House Brokers (CEHA) or Actual Property Agency (REA) examination, or equal; Exclusive brokers are extra keen to share listing information thus making certain the widest doable coverage inside the real estate community via Multiple Listings and Networking. Accepting a severe provide is simpler since your agent is totally conscious of all advertising activity related with your property. This reduces your having to check with a number of agents for some other offers. Price control is easily achieved. Paint work in good restore-discuss with your Property Marketing consultant if main works are still to be done. Softening in residential property prices proceed, led by 2.8 per cent decline within the index for Remainder of Central Region

    Once you place down the one per cent choice price to carry down a non-public property, it's important to accept its situation as it is whenever you move in – faulty air-con, choked rest room and all. Get round this by asking your agent to incorporate a ultimate inspection clause within the possibility-to-buy letter. HDB flat patrons routinely take pleasure in this security net. "There's a ultimate inspection of the property two days before the completion of all HDB transactions. If the air-con is defective, you can request the seller to repair it," says Kelvin.

    15.6.1 As the agent is an intermediary, generally, as soon as the principal and third party are introduced right into a contractual relationship, the agent drops out of the image, subject to any problems with remuneration or indemnification that he could have against the principal, and extra exceptionally, against the third occasion. Generally, agents are entitled to be indemnified for all liabilities reasonably incurred within the execution of the brokers´ authority.

    To achieve the very best outcomes, you must be always updated on market situations, including past transaction information and reliable projections. You could review and examine comparable homes that are currently available in the market, especially these which have been sold or not bought up to now six months. You'll be able to see a pattern of such report by clicking here It's essential to defend yourself in opposition to unscrupulous patrons. They are often very skilled in using highly unethical and manipulative techniques to try and lure you into a lure. That you must also protect your self, your loved ones, and personal belongings as you'll be serving many strangers in your home. Sign a listing itemizing of all of the objects provided by the proprietor, together with their situation. HSR Prime Recruiter 2010
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 6.5 The binary polyhedral groups, p. 68
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

Template:Refend