# Percentage

In mathematics, a **percentage** is a number or ratio expressed as a fraction of 100. It is often denoted using the percent sign, "%", or the abbreviation "pct."; sometimes the abbreviation "pc" is used in the case of quantities in economics.^{[1]} A percentage is a dimensionless number (pure number).

For example, 45% (read as "forty-five percent") is equal to 45/100, or 0.45. A related system which expresses a number as a fraction of 1,000 uses the terms "per mil" and "millage". Percentages are used to express how large or small one quantity is relative to another quantity. The first quantity usually represents a part of, or a change in, the second quantity. For example, an increase of $0.15 on a price of $2.50 is an increase by a fraction of 0.15/2.50 = 0.06. Expressed as a percentage, this is therefore a 6% increase. While percentage values are often between 0 and 100 there is no restriction and one may, for example, refer to 111% or −35%.

## History

In Ancient Rome, long before the existence of the decimal system, computations were often made in fractions which were multiples of 1/100. For example Augustus levied a tax of 1/100 on goods sold at auction known as *centesima rerum venalium*. Computation with these fractions was similar to computing percentages. As denominations of money grew in the Middle Ages, computations with a denominator of 100 become more standard and from the late 15th century to the early 16th century it became common for arithmetic texts to include such computations. Many of these texts applied these methods to profit and loss, interest rates, and the Rule of Three. By the 17th century it was standard to quote interest rates in hundredths.^{[2]}

### Percent sign

{{#invoke:main|main}}
The term "per cent" is derived from the Latin *per centum*, meaning "by the hundred".^{[3]}
The sign for "per cent" evolved by gradual contraction of the Italian term *per cento*, meaning "for a hundred". The "per" was often abbreviated as "p." and eventually disappeared entirely. The "cento" was contracted to two circles separated by a horizontal line, from which the modern "%" symbol is derived.^{[4]}

## Calculations

The percent value is computed by multiplying the numeric value of the ratio by 100. For example, to find 50 apples as a percentage of 1250 apples, first compute the ratio 50/1250 = 0.04, and then multiply by 100 to obtain 4%. The percent value can also be found by multiplying first, so in this example the 50 would be multiplied by 100 to give 5,000, and this result would be divided by 1250 to give 4%.^{[5]}

To calculate a percentage of a percentage, convert both percentages to fractions of 100, or to decimals, and multiply them. For example, 50% of 40% is:

- (50/100) × (40/100) = 0.50 × 0.40 = 0.20 = 20/100 = 20%.

It is not correct to divide by 100 and use the percent sign at the same time. (E.g. 25% = 25/100 = 0.25, not 25% / 100, which actually is (25/100) / 100 = 0.0025. A term such as (100/100)% would also be incorrect, this would be read as (1) percent even if the intent was to say 100%.)

Whenever we talk about a percentage, it is important to specify what it is relative to, i.e. what is the total that corresponds to 100%. The following problem illustrates this point.

- In a certain college 60% of all students are female, and 10% of all students are computer science majors. If 5% of female students are computer science majors, what percentage of computer science majors are female?

We are asked to compute the ratio of female computer science majors to all computer science majors. We know that 60% of all students are female, and among these 5% are computer science majors, so we conclude that (60/100) × (5/100) = 3/100 or 3% of all students are female computer science majors. Dividing this by the 10% of all students that are computer science majors, we arrive at the answer: 3%/10% = 30/100 or 30% of all computer science majors are female.

This example is closely related to the concept of conditional probability.

## Percentage increase and decrease

Sometimes due to inconsistent usage, it is not always clear from the context what a percentage is relative to. When speaking of a "10% rise" or a "10% fall" in a quantity, the usual interpretation is that this is relative to the *initial value* of that quantity. For example, if an item is initially priced at $200 and the price rises 10% (an increase of $20), the new price will be $220. Note that this final price is 110% of the initial price (100% + 10% = 110%).

Some other examples of percent changes:

- An increase of 100% in a quantity means that the final amount is 200% of the initial amount (100% of initial + 100% of increase = 200% of initial); in other words, the quantity has doubled.
- An increase of 800% means the final amount is 9 times the original (100% + 800% = 900% = 9 times as large).
- A decrease of 60% means the final amount is 40% of the original (100% − 60% = 40%).
- A decrease of 100% means the final amount is
*zero*(100% − 100% = 0%).

In general, a change of percent in a quantity results in a final amount that is percent of the original amount (equivalently, times the original amount).

## Compounding percentages

It is important to understand that percent changes, as they have been discussed here, *do not add* in the usual way, if applied sequentially. For example, if the 10% increase in price considered earlier (on the $200 item, raising its price to $220) is followed by a 10% decrease in the price (a decrease of $22), the final price will be $198, *not* the original price of $200. The reason for the apparent discrepancy is that the two percent changes (+10% and −10%) are measured relative to *different* quantities ($200 and $220, respectively), and thus do not "cancel out".

In general, if an increase of percent is followed by a decrease of percent, and the initial amount was , the final amount is ; thus the net change is an overall decrease by percent *of* percent (the square of the original percent change when expressed as a decimal number). Thus, in the above example, after an increase and decrease of percent, the final amount, $198, was 10% of 10%, or 1%, less than the initial amount of $200.

This can be expanded for a case where you do not have the same percent change. If the initial percent change is and the second percent change is , and the initial amount was , then the final amount is . To change the above example, after an increase of and decrease of percent, the final amount, $209, is 4.5% more than the initial amount of $200.

In the case of interest rates, it is a common practice to state the percent change differently. If an interest rate rises from 10% to 15%, for example, it is typical to say, "The interest rate increased by 5%" — rather than by 50%, which would be correct when measured as a percentage of the initial rate (i.e., from 0.10 to 0.15 is an increase of 50%). Such ambiguity can be avoided by using the term "percentage points" (pp). In the previous example, the interest rate "increased by 5 pp" from 10% to 15%. If the rate then drops by 5 percentage points, it will return to the initial rate of 10%, as expected.

## Word and symbol

{{#invoke:main|main}}

In British English, *percent* is sometimes written as two words (*per cent*, although *percentage* and *percentile* are written as one word).^{[6]} In American English, *percent* is the most common variant^{[7]} (but cf. *per mille* written as two words).

In the early part of the twentieth century, there was a dotted abbreviation form *"per cent.",* as opposed to *"per cent"*. The form "per cent." is still in use as a part of the highly formal language found in certain documents like commercial loan agreements (particularly those subject to, or inspired by, common law), as well as in the Hansard transcripts of British Parliamentary proceedings. The term has been attributed to Latin *per centum*.^{[8]} The concept of considering values as parts of a hundred is originally Greek. The symbol for percent (%) evolved from a symbol abbreviating the Italian *per cento*. In some other languages, the form *prosent* is used instead. Some languages use both a word derived from *percent* and an expression in that language meaning the same thing, e.g. Romanian *procent* and *la sută* (thus, *10 %* can be read or sometimes written *ten for [each] hundred*, similarly with the English *one out of ten*). Other abbreviations are rarer, but sometimes seen.

Grammar and style guides often differ as to how percentages are to be written. For instance, it is commonly suggested that the word percent (or per cent) be spelled out in all texts, as in "1 percent" and not "1%". Other guides prefer the word to be written out in humanistic texts, but the symbol to be used in scientific texts. Most guides agree that they always be written with a numeral, as in "5 percent" and not "five percent", the only exception being at the beginning of a sentence: "Ten percent of all writers love style guides." Decimals are also to be used instead of fractions, as in "3.5 percent of the gain" and not "3 ½ percent of the gain". It is also widely accepted to use the percent symbol (%) in tabular and graphic material.

In line with common English practice, style guides—such as *The Chicago Manual of Style*—generally state that the number and percent sign are written without any space in between.^{[9]}
However, the International System of Units and the ISO 31-0 standard require a space.^{[10]}^{[11]}

## Related units

- Percentage point
- Per mille (‰) 1 part in 1,000
- Basis point (‱) 1 part in 10,000
- Per cent mille (pcm) 1 part in 100,000
- Parts-per notation
- Grade (slope)
- Per-unit system

## Other uses

The word "percentage" is often a misnomer in the context of sports statistics, when the referenced number is expressed as a decimal proportion, not a percentage: "The Phoenix Suns' Shaquille O'Neal led the NBA with a .609 field goal percentage (FG%) during the 2008-09 season." (O'Neal made 60.9% of his shots, not 0.609%.) Likewise, the winning percentage of a team, the fraction of matches that the club has won, is also usually expressed as a decimal proportion; a team that has a .500 winning percentage has won 50% of their matches. The practice is probably related to the similar way that batting averages are quoted.

As "percent" it is used to describe the steepness of the slope of a road or railway, formula for which is which could also be expressed as the tangent of the angle of inclination times 100. The is the ratio of distances a vehicle would advance vertically and horizontally, respectively, when going up- or downhill, expressed in percent.

Percentage is also used to express composition of a mixture by mass percent and mole percent.

## Practical applications

## See also

## References

- ↑ http://www.telegraph.co.uk/finance/economics/11329769/Eurozone-officially-falls-into-deflation-piling-pressure-on-ECB.html
- ↑ {{#invoke:citation/CS1|citation |CitationClass=book }}
- ↑ American Heritage Dictionary of the English Language, 3rd ed. (1992) Houghton Mifflin
- ↑ Smith p. 250
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:OED
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite web

Template:Fractions and ratios {{ safesubst:#invoke:Unsubst||$N=Use dmy dates |date=__DATE__ |$B= }}