Context-free language

From formulasearchengine
Jump to navigation Jump to search

In formal language theory, a context-free language (CFL) is a language generated by some context-free grammar (CFG). Different CF grammars can generate the same CF language. It is important to distinguish properties of the language (intrinsic properties) from properties of a particular grammar (extrinsic properties).

The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing. Indeed, given a CFG, there is a direct way to produce a pushdown automaton for the grammar (and corresponding language), though going the other way (producing a grammar given an automaton) is not as direct.

Context-free languages have many applications in programming languages; for example, the language of all properly matched parentheses is generated by the grammar . Also, most arithmetic expressions are generated by context-free grammars.

Examples

An archetypal context-free language is , the language of all non-empty even-length strings, the entire first halves of which are 's, and the entire second halves of which are 's. is generated by the grammar . This language is not regular. It is accepted by the pushdown automaton where is defined as follows:[note 1]




Unambiguous CFLs are a proper subset of all CFLs: there are inherently ambiguous CFLs. An example of an inherently ambiguous CFL is the union of with . This set is context-free, since the union of two context-free languages is always context-free. But there is no way to unambiguously parse strings in the (non-context-free) subset which is the intersection of these two languages.Template:Sfn

Languages that are not context-free

The set is a context-sensitive language, but there does not exist a context-free grammar generating this language.Template:Sfn So there exist context-sensitive languages which are not context-free. To prove that a given language is not context-free, one may employ the pumping lemma for context-free languages[1] or a number of other methods, such as Ogden's lemma or Parikh's theorem.[2]

Closure properties

Context-free languages are closed under the following operations. That is, if L and P are context-free languages, the following languages are context-free as well:

Context-free languages are not closed under complement, intersection, or difference. However, if L is a context-free language and D is a regular language then both their intersection and their difference are context-free languages.

Nonclosure under intersection and complement and difference

The context-free languages are not closed under intersection. This can be seen by taking the languages and , which are both context-free.[note 2] Their intersection is , which can be shown to be non-context-free by the pumping lemma for context-free languages.

Context-free languages are also not closed under complementation, as for any languages A and B: .

Context-free language are also not closed under difference: LC = Σ* \ L

Decidability properties

The following problems are undecidable for arbitrary context-free grammars A and B:

The following problems are decidable for arbitrary context-free languages:

According to Hopcroft, Motwani, Ullman (2003),[4] many of the fundamental closure and (un)decidability properties of context-free languages were shown in the 1961 paper of Bar-Hillel, Perles, and Shamir[1]

Parsing

Determining an instance of the membership problem; i.e. given a string , determine whether where is the language generated by a given grammar ; is also known as recognition. Context-free recognition for Chomsky normal form grammars was shown by Leslie G. Valiant to be reducible to boolean matrix multiplication, thus inheriting its complexity upper bound of O(n2.3728639).[5][6][note 3] Conversely, Lillian Lee has shown O(n3-ε) boolean matrix multiplication to be reducible to O(n3-3ε) CFG parsing, thus establishing some kind of lower bound for the latter.[7]

Practical uses of context-free languages require also to produce a derivation tree that exhibits the structure that the grammar associates with the given string. The process of producing this tree is called parsing. Known parsers have a time complexity that is cubic in the size of the string that is parsed.

Formally, the set of all context-free languages is identical to the set of languages accepted by pushdown automata (PDA). Parser algorithms for context-free languages include the CYK algorithm and the Earley's Algorithm.

A special subclass of context-free languages are the deterministic context-free languages which are defined as the set of languages accepted by a deterministic pushdown automaton and can be parsed by a LR(k) parser.[8]

See also parsing expression grammar as an alternative approach to grammar and parser.

See also

Notes

  1. meaning of 's arguments and results:
  2. A context-free grammar for the language A is given by the following production rules, taking S as the start symbol: SSc | aTb | ε; TaTb | ε. The grammar for B is analogous.
  3. In Valiant's papers, O(n2.81) given, the then best known upper bound. See Matrix multiplication#Algorithms for efficient matrix multiplication and Coppersmith–Winograd algorithm for bound improvements since then.

References

  1. 1.0 1.1 {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  2. How to prove that a language is not context-free?
  3. Template:Harvtxt, p. 59, Theorem 6.7
  4. {{#invoke:citation/CS1|citation |CitationClass=book }} Here: Sect.7.6, p.304, and Sect.9.7, p.411
  5. Template:Cite techreport
  6. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  7. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  8. Template:Cite doi

Template:Refbegin

  • {{#invoke:citation/CS1|citation

|CitationClass=book }}

  • {{#invoke:citation/CS1|citation

|CitationClass=book }}

  • {{#invoke:citation/CS1|citation

|CitationClass=book }}

  • {{#invoke:citation/CS1|citation

|CitationClass=book }} Chapter 2: Context-Free Languages, pp. 91–122.

Template:Refend

Template:Navbox with columns