# AW*-algebra

In mathematics, an **AW*-algebra** is an algebraic generalization of a W*-algebra. They were introduced by Irving Kaplansky in 1951.^{[1]} As operator algebras, von Neumann algebras, among all C*-algebras, are typically handled using one of two means: they are the dual space of some Banach space, and they are determined to a large extent by their projections. The idea behind AW*-algebras is to forego the former, topological, condition, and use only the latter, algebraic, condition.

## Definition

Recall that a projection of a C*-algebra is an element satisfying .

A C*-algebra is an AW*-algebra when for every subset , the right annihilator

is generated as a left ideal by some projection of , and similarly the left annihilator is generated as a right ideal by some projection :

Hence an AW*-algebra is a C*-algebras that is at the same time a Baer *-ring.

## Structure theory

Many results concerning von Neumann algebras carry over to AW*-algebras. For example, AW*-algebras can be classified according to the behavior of their projections, and decompose into types.^{[2]} For another example, normal matrices with entries in an AW*-algebra can always be diagonalized.^{[3]} AW*-algebras also always have polar decomposition.^{[4]}

However, there are also ways in which AW*-algebras behave differently from von Neumann algebras.^{[5]} For example, AW*-algebras of type I can exhibit pathological properties,^{[6]} even though Kaplansky already showed that such algebras with trivial center are automatically von Neumann algebras.

## The commutative case

By Gelfand duality, any commutative C*-algebra is isomorphic to the algebra of continuous functions for some compact Hausdorff space . If is an AW*-algebra, then is in fact a Stonean space. Via Stone duality, commutative AW*-algebras therefore correspond to complete Boolean algebras. The projections of a commutative AW*-algebra form a complete Boolean algebra, and conversely, any complete Boolean algebra is isomorphic to the projections of some commutative AW*-algebra.

## References

- ↑ {{#invoke:Citation/CS1|citation |CitationClass=journal }}
- ↑ {{#invoke:citation/CS1|citation |CitationClass=book }}
- ↑ {{#invoke:Citation/CS1|citation |CitationClass=journal }}
- ↑ {{#invoke:Citation/CS1|citation |CitationClass=journal }}
- ↑ Template:Cite web
- ↑ {{#invoke:Citation/CS1|citation |CitationClass=journal }}