(heparan sulfate)-glucosamine 3-sulfotransferase 1

From formulasearchengine
Jump to navigation Jump to search

Template:Mergeto Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. In mathematics, specifically algebraic geometry, the base locus of a linear system of divisors on a variety refers to the subvariety of points 'common' to all divisors in the linear system.

Geometrically, this corresponds to the common intersection of the varieties.

Definition

More precisely, suppose that is a linear system of divisors on some variety . Consider the intersection

where denotes the support of a divisor, and the intersection is taken over all effective divisors in the linear system. This is the base locus of (as a set, at least: there may be more subtle scheme-theoretic considerations as to what the structure sheaf of should be).

One application of the notion of base locus is to nefness of a Cartier divisor class (i.e. complete linear system). Suppose is such a class on a variety , and an irreducible curve on . If is not contained in the base locus of , then there exists some divisor in the class which does not contain , and so intersects it properly. Basic facts from intersection theory then tell us that we must have . The conclusion is that to check nefness of a divisor class, it suffices to compute the intersection number with curves contained in the base locus of the class. So, roughly speaking, the 'smaller' the base locus, the 'more likely' it is that the class is nef.

In the modern formulation of algebraic geometry, a linear system of (Cartier) divisors on a variety is viewed as a line bundle on . From this viewpoint, the base locus is the set of common zeroes of all sections of . A simple consequence is that the bundle is globally generated if and only if the base locus is empty.

References

  • Hartshorne, R. Algebraic Geometry, Springer-Verlag, 1977; corrected 6th printing, 1993. ISBN 0-387-90244-9.
  • Lazarsfeld, R., Positivity in Algebraic Geometry I, Springer-Verlag, 2004. ISBN 3-540-22533-1.