Cartan–Eilenberg resolution
In category theory, a Krull–Schmidt category is a generalization of categories in which the Krull–Schmidt theorem holds. They arise in the study of the representation theory of finite-dimensional algebras.
Definition
Let k be a field. A category enriched over finite-dimensional k-vector spaces is a Krull–Schmidt category if all idempotents split. In other words, if satisfies , then there exists an object Y and morphisms and such that and . If is a local ring whenever X is indecomposable, i.e., not isomorphic to the coproduct of two nonzero objects, then the condition is satisfied and the category is Krull–Schmidt.
To every Krull–Schmidt category K, one associates an Auslander–Reiten quiver.
Properties
One has the analogue of the Krull–Schmidt theorem in Krull–Schmidt categories. Namely, given isomorphisms where the and are indecomposable, then , and there exists a permutation such that for all i.
See also
References
- Claus Michael Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics 1099, Springer-Verlag, 1984.