Curved mirror
In mathematics, in the realm of abelian group theory, an abelian group is said to be cotorsion if every extension of it by a torsion-free group splits. If the group is , this is equivalent to asserting that for all torsion-free groups . It suffices to check the condition for being the group of rational numbers.
Some properties of cotorsion groups:
- Any quotient of a cotorsion group is cotorsion.
- A direct product of groups is cotorsion if and only if each factor is.
- Every divisible group or injective group is cotorsion.
- The Baer Fomin Theorem states that a torsion group is cotorsion if and only if it is a direct sum of a divisible group and a bounded group, that is, a group of bounded exponent.
- A torsion-free abelian group is cotorsion if and only if it is algebraically compact.
- Ulm subgroups of cotorsion groups are cotorsion and Ulm factors of cotorsion groups are algebraically compact.
External links
- 53 yrs old Fitter (Common ) Batterton from Carp, likes to spend some time kid advocate, property developers in singapore and handball. Completed a cruise liner experience that was comprised of passing by Gusuku Sites and Related Properties of the Kingdom of Ryukyu.
Here is my web page www.mtfgaming.com