List of integrals of exponential functions: Difference between revisions
Jump to navigation
Jump to search
en>Blah314 |
Undid revision 582340425 by 203.110.246.22 (talk) Because this revision removed an entire section of integrals that was very useful. Not sure why anyone would do that. |
||
Line 1: | Line 1: | ||
The following is a list of [[integral]]s ([[antiderivative]] functions) of [[logarithmic function]]s. For a complete list of integral functions, see [[list of integrals]]. | |||
''Note:'' ''x''>0 is assumed throughout this article, and the [[constant of integration]] is omitted for simplicity. | |||
: <math>\int\ln ax\;dx = x\ln ax - x</math> | |||
: <math>\int\ln (ax + b)\;dx = \frac{(ax+b)\ln(ax+b) - ax}{a}</math> | |||
: <math>\int (\ln x)^2\; dx = x(\ln x)^2 - 2x\ln x + 2x</math> | |||
: <math>\int (\ln x)^n\; dx = x\sum^{n}_{k=0}(-1)^{n-k} \frac{n!}{k!}(\ln x)^k</math> | |||
: <math>\int \frac{dx}{\ln x} = \ln|\ln x| + \ln x + \sum^\infty_{k=2}\frac{(\ln x)^k}{k\cdot k!}</math> | |||
: <math>\int \frac{dx}{(\ln x)^n} = -\frac{x}{(n-1)(\ln x)^{n-1}} + \frac{1}{n-1}\int\frac{dx}{(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math> | |||
: <math>\int x^m\ln x\;dx = x^{m+1}\left(\frac{\ln x}{m+1}-\frac{1}{(m+1)^2}\right) \qquad\mbox{(for }m\neq -1\mbox{)}</math> | |||
: <math>\int x^m (\ln x)^n\; dx = \frac{x^{m+1}(\ln x)^n}{m+1} - \frac{n}{m+1}\int x^m (\ln x)^{n-1} dx \qquad\mbox{(for }m\neq -1\mbox{)}</math> | |||
: <math>\int \frac{(\ln x)^n\; dx}{x} = \frac{(\ln x)^{n+1}}{n+1} \qquad\mbox{(for }n\neq -1\mbox{)}</math> | |||
: <math>\int \frac{\ln{x^n}\;dx}{x} = \frac{(\ln{x^n})^2}{2n} \qquad\mbox{(for }n\neq 0\mbox{)} </math> | |||
: <math>\int \frac{\ln x\,dx}{x^m} = -\frac{\ln x}{(m-1)x^{m-1}}-\frac{1}{(m-1)^2 x^{m-1}} \qquad\mbox{(for }m\neq 1\mbox{)}</math> | |||
: <math>\int \frac{(\ln x)^n\; dx}{x^m} = -\frac{(\ln x)^n}{(m-1)x^{m-1}} + \frac{n}{m-1}\int\frac{(\ln x)^{n-1} dx}{x^m} \qquad\mbox{(for }m\neq 1\mbox{)}</math> | |||
: <math>\int \frac{x^m\; dx}{(\ln x)^n} = -\frac{x^{m+1}}{(n-1)(\ln x)^{n-1}} + \frac{m+1}{n-1}\int\frac{x^m dx}{(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math> | |||
: <math>\int \frac{dx}{x\ln x} = \ln \left|\ln x\right|</math> | |||
: <math>\int \frac{dx}{x^n\ln x} = \ln \left|\ln x\right| + \sum^\infty_{k=1} (-1)^k\frac{(n-1)^k(\ln x)^k}{k\cdot k!}</math> | |||
: <math>\int \frac{dx}{x(\ln x)^n} = -\frac{1}{(n-1)(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math> | |||
: <math>\int \ln(x^2+a^2)\; dx = x\ln(x^2+a^2)-2x+2a\tan^{-1} \frac{x}{a}</math> | |||
: <math>\int \frac{x}{x^2+a^2}\ln(x^2+a^2)\; dx = \frac{1}{4} \ln^2(x^2+a^2)</math> | |||
: <math>\int \sin (\ln x)\;dx = \frac{x}{2}(\sin (\ln x) - \cos (\ln x))</math> | |||
: <math>\int \cos (\ln x)\;dx = \frac{x}{2}(\sin (\ln x) + \cos (\ln x))</math> | |||
: <math>\int e^x \left(x \ln x - x - \frac{1}{x}\right)\;dx = e^x (x \ln x - x - \ln x) </math> | |||
: <math>\int \frac{1}{e^x} \left( \frac{1}{x}-\ln x \right)\;dx = \frac{\ln x}{e^x} </math> | |||
: <math>\int e^x \left( \frac{1}{\ln x}- \frac{1}{x\ln^2 x} \right)\;dx = \frac{e^x}{\ln x} </math> | |||
For <math>n</math> consecutive integrations, the formula | |||
: <math>\int\ln x\;dx = x\;(\ln x - 1) +C_{0} </math> | |||
generalizes to | |||
: <math>\int\cdot\cdot\cdot\int\ln x\;dx\cdot\cdot\cdot\;dx = \frac{x^{n}}{n!}\left(\ln\,x-\sum_{k=1}^{n}\frac{1}{k}\right)+ \sum_{k=0}^{n-1} C_{k} \frac{x^{k}}{k!} </math> | |||
== References == | |||
* [[Milton Abramowitz]] and [[Irene A. Stegun]], ''[[Abramowitz and Stegun|Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]]'', 1964. A few integrals are listed on [http://www.math.sfu.ca/~cbm/aands/page_69.htm page 69]. | |||
{{Lists of integrals}} | |||
[[Category:Integrals|Logarithmic functions]] | |||
[[Category:Mathematics-related lists|Integrals of logarithmic functions]] |
Revision as of 23:23, 21 November 2013
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals.
Note: x>0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
For consecutive integrations, the formula
generalizes to
References
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1964. A few integrals are listed on page 69.