List of integrals of rational functions: Difference between revisions
en>Avanhel |
en>Plastikspork Indent |
||
Line 1: | Line 1: | ||
{{Trigonometry}} | |||
The following is a list of [[integral]]s ([[antiderivative]] [[function (mathematics)|function]]s) of [[trigonometric functions]]. For antiderivatives involving both exponential and trigonometric functions, see [[List of integrals of exponential functions]]. For a complete list of antiderivative functions, see [[lists of integrals]]. See also [[trigonometric integral]]. | |||
Generally, if the function <math>\sin(x)</math> is any trigonometric function, and <math>\cos(x)</math> is its derivative, | |||
: <math>\int a\cos nx\;\mathrm{d}x = \frac{a}{n}\sin nx+C</math> | |||
In all formulas the constant ''a'' is assumed to be nonzero, and ''C'' denotes the [[constant of integration]]. | |||
== Integrals involving only [[sine]] == | |||
: <math>\int\sin ax\;\mathrm{d}x = -\frac{1}{a}\cos ax+C\,\!</math> | |||
<br /> | |||
: <math>\int\sin^2 {ax}\;\mathrm{d}x = \frac{x}{2} - \frac{1}{4a} \sin 2ax +C= \frac{x}{2} - \frac{1}{2a} \sin ax\cos ax +C\!</math> | |||
<br /> | |||
: <math>\int\sin^3 {ax}\;\mathrm{d}x = \frac{\cos 3ax}{12a} - \frac{3 \cos ax}{4a} +C\!</math> | |||
: <math>\int x\sin^2 {ax}\;\mathrm{d}x = \frac{x^2}{4} - \frac{x}{4a} \sin 2ax - \frac{1}{8a^2} \cos 2ax +C\!</math> | |||
<br /> | |||
: <math>\int x^2\sin^2 {ax}\;\mathrm{d}x = \frac{x^3}{6} - \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax - \frac{x}{4a^2} \cos 2ax +C\!</math> | |||
<br /> | |||
: <math>\int\sin b_1x\sin b_2x\;\mathrm{d}x = \frac{\sin((b_2-b_1)x)}{2(b_2-b_1)}-\frac{\sin((b_1+b_2)x)}{2(b_1+b_2)}+C \qquad\mbox{(for }|b_1|\neq|b_2|\mbox{)}\,\!</math> | |||
<br /> | |||
: <math>\int\sin^n {ax}\;\mathrm{d}x = -\frac{\sin^{n-1} ax\cos ax}{na} + \frac{n-1}{n}\int\sin^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n>2\mbox{)}\,\!</math> | |||
<br /> | |||
: <math>\int\frac{\mathrm{d}x}{\sin ax} = \frac{1}{a}\ln \left|\tan\frac{ax}{2}\right|+C</math> | |||
<br /> | |||
: <math>\int\frac{\mathrm{d}x}{\sin^n ax} = \frac{\cos ax}{a(1-n) \sin^{n-1} ax}+\frac{n-2}{n-1}\int\frac{\mathrm{d}x}{\sin^{n-2}ax} \qquad\mbox{(for }n>1\mbox{)}\,\!</math> | |||
<br /> | |||
: <math>\int x\sin ax\;\mathrm{d}x = \frac{\sin ax}{a^2}-\frac{x\cos ax}{a}+C\,\!</math> | |||
<br /> | |||
: <math>\int x^n\sin ax\;\mathrm{d}x = -\frac{x^n}{a}\cos ax+\frac{n}{a}\int x^{n-1}\cos ax\;\mathrm{d}x = \sum_{k=0}^{2k\leq n} (-1)^{k+1} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \cos ax +\sum_{k=0}^{2k+1\leq n}(-1)^k \frac{x^{n-1-2k}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \sin ax \qquad\mbox{(for }n>0\mbox{)}\,\!</math> | |||
<br /> | |||
<br /> | |||
: <math>\int\frac{\sin ax}{x} \mathrm{d}x = \sum_{n=0}^\infty (-1)^n\frac{(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!} +C\,\!</math> | |||
<br /> | |||
: <math>\int\frac{\sin ax}{x^n} \mathrm{d}x = -\frac{\sin ax}{(n-1)x^{n-1}} + \frac{a}{n-1}\int\frac{\cos ax}{x^{n-1}} \mathrm{d}x\,\!</math> | |||
<br /> | |||
: <math>\int\frac{\mathrm{d}x}{1\pm\sin ax} = \frac{1}{a}\tan\left(\frac{ax}{2}\mp\frac{\pi}{4}\right)+C</math> | |||
<br /> | |||
: <math>\int\frac{x\;\mathrm{d}x}{1+\sin ax} = \frac{x}{a}\tan\left(\frac{ax}{2} - \frac{\pi}{4}\right)+\frac{2}{a^2}\ln\left|\cos\left(\frac{ax}{2}-\frac{\pi}{4}\right)\right|+C</math> | |||
<br /> | |||
: <math>\int\frac{x\;\mathrm{d}x}{1-\sin ax} = \frac{x}{a}\cot\left(\frac{\pi}{4} - \frac{ax}{2}\right)+\frac{2}{a^2}\ln\left|\sin\left(\frac{\pi}{4}-\frac{ax}{2}\right)\right|+C</math> | |||
<br /> | |||
: <math>\int\frac{\sin ax\;\mathrm{d}x}{1\pm\sin ax} = \pm x+\frac{1}{a}\tan\left(\frac{\pi}{4}\mp\frac{ax}{2}\right)+C</math> | |||
== Integrands involving only [[cosine]] == | |||
: <math>\int\cos ax\;\mathrm{d}x = \frac{1}{a}\sin ax+C\,\!</math> | |||
: <math>\int\cos^2 {ax}\;\mathrm{d}x = \frac{x}{2} + \frac{1}{4a} \sin 2ax +C = \frac{x}{2} + \frac{1}{2a} \sin ax\cos ax +C\!</math> | |||
: <math>\int\cos^n ax\;\mathrm{d}x = \frac{\cos^{n-1} ax\sin ax}{na} + \frac{n-1}{n}\int\cos^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n>0\mbox{)}\,\!</math> | |||
: <math>\int x\cos ax\;\mathrm{d}x = \frac{\cos ax}{a^2} + \frac{x\sin ax}{a}+C\,\!</math> | |||
: <math>\int x^2\cos^2 {ax}\;\mathrm{d}x = \frac{x^3}{6} + \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax + \frac{x}{4a^2} \cos 2ax +C\!</math> | |||
: <math>\int x^n\cos ax\;\mathrm{d}x = \frac{x^n\sin ax}{a} - \frac{n}{a}\int x^{n-1}\sin ax\;\mathrm{d}x\,= \sum_{k=0}^{2k+1\leq n} (-1)^{k} \frac{x^{n-2k-1}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \cos ax +\sum_{k=0}^{2k\leq n}(-1)^{k} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \sin ax \!</math> | |||
: <math>\int\frac{\cos ax}{x} \mathrm{d}x = \ln|ax|+\sum_{k=1}^\infty (-1)^k\frac{(ax)^{2k}}{2k\cdot(2k)!}+C\,\!</math> | |||
: <math>\int\frac{\cos ax}{x^n} \mathrm{d}x = -\frac{\cos ax}{(n-1)x^{n-1}}-\frac{a}{n-1}\int\frac{\sin ax}{x^{n-1}} \mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{\cos ax} = \frac{1}{a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C</math> | |||
: <math>\int\frac{\mathrm{d}x}{\cos^n ax} = \frac{\sin ax}{a(n-1) \cos^{n-1} ax} + \frac{n-2}{n-1}\int\frac{\mathrm{d}x}{\cos^{n-2} ax} \qquad\mbox{(for }n>1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{1+\cos ax} = \frac{1}{a}\tan\frac{ax}{2}+C\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{1-\cos ax} = -\frac{1}{a}\cot\frac{ax}{2}+C</math> | |||
: <math>\int\frac{x\;\mathrm{d}x}{1+\cos ax} = \frac{x}{a}\tan\frac{ax}{2} + \frac{2}{a^2}\ln\left|\cos\frac{ax}{2}\right|+C</math> | |||
: <math>\int\frac{x\;\mathrm{d}x}{1-\cos ax} = -\frac{x}{a}\cot\frac{ax}{2}+\frac{2}{a^2}\ln\left|\sin\frac{ax}{2}\right|+C</math> | |||
: <math>\int\frac{\cos ax\;\mathrm{d}x}{1+\cos ax} = x - \frac{1}{a}\tan\frac{ax}{2}+C\,\!</math> | |||
: <math>\int\frac{\cos ax\;\mathrm{d}x}{1-\cos ax} = -x-\frac{1}{a}\cot\frac{ax}{2}+C\,\!</math> | |||
: <math>\int\cos a_1x\cos a_2x\;\mathrm{d}x = \frac{\sin(a_2-a_1)x}{2(a_2-a_1)}+\frac{\sin(a_2+a_1)x}{2(a_2+a_1)}+C \qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!</math> | |||
== Integrands involving only [[tangent (trigonometric function)|tangent]] == | |||
: <math>\int\tan ax\;\mathrm{d}x = -\frac{1}{a}\ln|\cos ax|+C = \frac{1}{a}\ln|\sec ax|+C\,\!</math> | |||
:<math>\int \tan^2{x} \, \mathrm{d}x = \tan{x} - x +C</math> | |||
: <math>\int\tan^n ax\;\mathrm{d}x = \frac{1}{a(n-1)}\tan^{n-1} ax-\int\tan^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{q \tan ax + p} = \frac{1}{p^2 + q^2}(px + \frac{q}{a}\ln|q\sin ax + p\cos ax|)+C \qquad\mbox{(for }p^2 + q^2\neq 0\mbox{)}\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{\tan ax - 1} = -\frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!</math> | |||
: <math>\int\frac{\tan ax\;\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} - \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!</math> | |||
: <math>\int\frac{\tan ax\;\mathrm{d}x}{\tan ax - 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!</math> | |||
== Integrands involving only [[secant]] == | |||
: ''See [[Integral of the secant function]].'' | |||
:<math>\int \sec{ax} \, \mathrm{d}x = \frac{1}{a}\ln{\left| \sec{ax} + \tan{ax}\right|}+C</math> | |||
:<math>\int \sec^2{x} \, \mathrm{d}x = \tan{x}+C</math> | |||
:<math>\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C.</math> | |||
:<math>\int \sec^n{ax} \, \mathrm{d}x = \frac{\sec^{n-2}{ax} \tan {ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{ax} \, \mathrm{d}x \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!</math> | |||
:<math>\int \frac{\mathrm{d}x}{\sec{x} + 1} = x - \tan{\frac{x}{2}}+C</math> | |||
<!-- In the 17th century, the integral of the secant function was the subject of a well-known conjecture posed in the 1640s by Henry Bond. The problem was solved by [[Isaac Barrow]].<ref>V. Frederick Rickey and Philip M. Tuchinsky, "An Application of Geography to Mathematics: History of the Integral of the Secant", ''[[Mathematics Magazine]]'', volume 53, number 3, May 2980, pages 162–166</ref> It was originally for the purposes of [[cartography]] that this was needed. --> | |||
== Integrands involving only [[cosecant]] == | |||
:<math>\int \csc{ax} \, \mathrm{d}x = -\frac{1}{a}\ln{\left| \csc{ax}+\cot{ax}\right|}+C</math> | |||
:<math>\int \csc^2{x} \, \mathrm{d}x = -\cot{x}+C</math> | |||
:<math>\int \csc^n{ax} \, \mathrm{d}x = -\frac{\csc^{n-1}{ax} \cos{ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \csc^{n-2}{ax} \, \mathrm{d}x \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!</math> | |||
:<math>\int \frac{\mathrm{d}x}{\csc{x} + 1} = x - \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}+\sin{\frac{x}{2}}}+C</math> | |||
:<math>\int \frac{\mathrm{d}x}{\csc{x} - 1} = \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}-x+C</math> | |||
== Integrands involving only [[cotangent]] == | |||
:<math>\int\cot ax\;\mathrm{d}x = \frac{1}{a}\ln|\sin ax|+C\,\!</math> | |||
: <math>\int\cot^n ax\;\mathrm{d}x = -\frac{1}{a(n-1)}\cot^{n-1} ax - \int\cot^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{1 + \cot ax} = \int\frac{\tan ax\;\mathrm{d}x}{\tan ax+1}\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{1 - \cot ax} = \int\frac{\tan ax\;\mathrm{d}x}{\tan ax-1}\,\!</math> | |||
== Integrands involving both [[sine]] and [[cosine]] == | |||
: <math>\int\frac{\mathrm{d}x}{\cos ax\pm\sin ax} = \frac{1}{a\sqrt{2}}\ln\left|\tan\left(\frac{ax}{2}\pm\frac{\pi}{8}\right)\right|+C</math> | |||
: <math>\int\frac{\mathrm{d}x}{(\cos ax\pm\sin ax)^2} = \frac{1}{2a}\tan\left(ax\mp\frac{\pi}{4}\right)+C</math> | |||
: <math>\int\frac{\mathrm{d}x}{(\cos x + \sin x)^n} = \frac{1}{n-1}\left(\frac{\sin x - \cos x}{(\cos x + \sin x)^{n - 1}} - 2(n - 2)\int\frac{\mathrm{d}x}{(\cos x + \sin x)^{n-2}} \right)</math> | |||
: <math>\int\frac{\cos ax\;\mathrm{d}x}{\cos ax + \sin ax} = \frac{x}{2} + \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C</math> | |||
: <math>\int\frac{\cos ax\;\mathrm{d}x}{\cos ax - \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C</math> | |||
: <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos ax + \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C</math> | |||
: <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos ax - \sin ax} = -\frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C</math> | |||
: <math>\int\frac{\cos ax\;\mathrm{d}x}{\sin ax(1+\cos ax)} = -\frac{1}{4a}\tan^2\frac{ax}{2}+\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C</math> | |||
: <math>\int\frac{\cos ax\;\mathrm{d}x}{\sin ax(1-\cos ax)} = -\frac{1}{4a}\cot^2\frac{ax}{2}-\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C</math> | |||
: <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos ax(1+\sin ax)} = \frac{1}{4a}\cot^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)+\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C</math> | |||
: <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos ax(1-\sin ax)} = \frac{1}{4a}\tan^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)-\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C</math> | |||
: <math>\int\sin ax\cos ax\;\mathrm{d}x = -\frac{1}{2a}\cos^2 ax +C\,\!</math> | |||
: <math>\int\sin a_1x\cos a_2x\;\mathrm{d}x = -\frac{\cos((a_1-a_2)x)}{2(a_1-a_2)} -\frac{\cos((a_1+a_2)x)}{2(a_1+a_2)} +C\qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!</math> | |||
: <math>\int\sin^n ax\cos ax\;\mathrm{d}x = \frac{1}{a(n+1)}\sin^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!</math> | |||
: <math>\int\sin ax\cos^n ax\;\mathrm{d}x = -\frac{1}{a(n+1)}\cos^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!</math> | |||
: <math>\int\sin^n ax\cos^m ax\;\mathrm{d}x = -\frac{\sin^{n-1} ax\cos^{m+1} ax}{a(n+m)}+\frac{n-1}{n+m}\int\sin^{n-2} ax\cos^m ax\;\mathrm{d}x \qquad\mbox{(for }m,n>0\mbox{)}\,\!</math> | |||
: also: <math>\int\sin^n ax\cos^m ax\;\mathrm{d}x = \frac{\sin^{n+1} ax\cos^{m-1} ax}{a(n+m)} + \frac{m-1}{n+m}\int\sin^n ax\cos^{m-2} ax\;\mathrm{d}x \qquad\mbox{(for }m,n>0\mbox{)}\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{\sin ax\cos ax} = \frac{1}{a}\ln\left|\tan ax\right|+C</math> | |||
: <math>\int\frac{\mathrm{d}x}{\sin ax\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax}+\int\frac{\mathrm{d}x}{\sin ax\cos^{n-2} ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\mathrm{d}x}{\sin^n ax\cos ax} = -\frac{1}{a(n-1)\sin^{n-1} ax}+\int\frac{\mathrm{d}x}{\sin^{n-2} ax\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\sin ax\;\mathrm{d}x}{\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\sin^2 ax\;\mathrm{d}x}{\cos ax} = -\frac{1}{a}\sin ax+\frac{1}{a}\ln\left|\tan\left(\frac{\pi}{4}+\frac{ax}{2}\right)\right|+C</math> | |||
: <math>\int\frac{\sin^2 ax\;\mathrm{d}x}{\cos^n ax} = \frac{\sin ax}{a(n-1)\cos^{n-1}ax}-\frac{1}{n-1}\int\frac{\mathrm{d}x}{\cos^{n-2}ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\sin^n ax\;\mathrm{d}x}{\cos ax} = -\frac{\sin^{n-1} ax}{a(n-1)} + \int\frac{\sin^{n-2} ax\;\mathrm{d}x}{\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^m ax} = \frac{\sin^{n+1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-m+2}{m-1}\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!</math> | |||
: also: <math>\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^m ax} = -\frac{\sin^{n-1} ax}{a(n-m)\cos^{m-1} ax}+\frac{n-1}{n-m}\int\frac{\sin^{n-2} ax\;\mathrm{d}x}{\cos^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!</math> | |||
: also: <math>\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^m ax} = \frac{\sin^{n-1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-1}{m-1}\int\frac{\sin^{n-2} ax\;\mathrm{d}x}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\cos ax\;\mathrm{d}x}{\sin^n ax} = -\frac{1}{a(n-1)\sin^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
: <math>\int\frac{\cos^2 ax\;\mathrm{d}x}{\sin ax} = \frac{1}{a}\left(\cos ax+\ln\left|\tan\frac{ax}{2}\right|\right) +C</math> | |||
: <math>\int\frac{\cos^2 ax\;\mathrm{d}x}{\sin^n ax} = -\frac{1}{n-1}\left(\frac{\cos ax}{a\sin^{n-1} ax)}+\int\frac{\mathrm{d}x}{\sin^{n-2} ax}\right) \qquad\mbox{(for }n\neq 1\mbox{)}</math> | |||
: <math>\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^m ax} = -\frac{\cos^{n+1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-m+2}{m-1}\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!</math> | |||
: also: <math>\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^m ax} = \frac{\cos^{n-1} ax}{a(n-m)\sin^{m-1} ax} + \frac{n-1}{n-m}\int\frac{\cos^{n-2} ax\;\mathrm{d}x}{\sin^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!</math> | |||
: also: <math>\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^m ax} = -\frac{\cos^{n-1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-1}{m-1}\int\frac{\cos^{n-2} ax\;\mathrm{d}x}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!</math> | |||
== Integrands involving both [[sine]] and [[tangent]] == | |||
: <math>\int \sin ax \tan ax\;\mathrm{d}x = \frac{1}{a}(\ln|\sec ax + \tan ax| - \sin ax)+C\,\!</math> | |||
: <math>\int\frac{\tan^n ax\;\mathrm{d}x}{\sin^2 ax} = \frac{1}{a(n-1)}\tan^{n-1} (ax) +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
== Integrands involving both [[cosine]] and [[tangent]] == | |||
: <math>\int\frac{\tan^n ax\;\mathrm{d}x}{\cos^2 ax} = \frac{1}{a(n+1)}\tan^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!</math> | |||
== Integrals containing both [[sine]] and [[cotangent]] == | |||
: <math>\int\frac{\cot^n ax\;\mathrm{d}x}{\sin^2 ax} = -\frac{1}{a(n+1)}\cot^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!</math> | |||
== Integrands involving both [[cosine]] and [[cotangent]] == | |||
: <math>\int\frac{\cot^n ax\;\mathrm{d}x}{\cos^2 ax} = \frac{1}{a(1-n)}\tan^{1-n} ax +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!</math> | |||
== Integrands involving both [[secant]] and [[tangent]] == | |||
: <math> \int\sec x \tan x \ dx= \sec x + C</math> | |||
== Integrals with symmetric limits == | |||
: <math>\int_{{-c}}^{{c}}\sin {x}\;\mathrm{d}x = 0 \!</math> | |||
: <math>\int_{{-c}}^{{c}}\cos {x}\;\mathrm{d}x = 2\int_{{0}}^{{c}}\cos {x}\;\mathrm{d}x = 2\int_{{-c}}^{{0}}\cos {x}\;\mathrm{d}x = 2\sin {c} \!</math> | |||
: <math>\int_{{-c}}^{{c}}\tan {x}\;\mathrm{d}x = 0 \!</math> | |||
: <math>\int_{-\frac{a}{2}}^{\frac{a}{2}} x^2\cos^2 {\frac{n\pi x}{a}}\;\mathrm{d}x = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2} \qquad\mbox{(for }n=1,3,5...\mbox{)}\,\!</math> | |||
: <math>\int_{\frac{-a}{2}}^{\frac{a}{2}} x^2\sin^2 {\frac{n\pi x}{a}}\;\mathrm{d}x = \frac{a^3(n^2\pi^2-6(-1)^n)}{24n^2\pi^2} = \frac{a^3}{24} (1-6\frac{(-1)^n}{n^2\pi^2}) \qquad\mbox{(for }n=1,2,3,...\mbox{)}\,\!</math> | |||
== Integral over a full circle== | |||
: <math>\int_{{0}}^{{2 \pi}}\sin^{2m+1}{x}\ cos^{2n+1}{x}\;\mathrm{d}x = 0 \! \qquad \{n,m\} \in \mathbb{Z}</math> | |||
==References== | |||
{{Reflist}} | |||
{{Lists of integrals}} | |||
[[Category:Integrals|Trigonometric functions]] | |||
[[Category:Trigonometry]] | |||
[[Category:Mathematics-related lists|Integrals of trigonometric functions]] |
Revision as of 23:58, 17 November 2013
Template:Trigonometry The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see lists of integrals. See also trigonometric integral.
Generally, if the function is any trigonometric function, and is its derivative,
In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
Integrals involving only sine
Integrands involving only cosine
Integrands involving only tangent
Integrands involving only secant
Integrands involving only cosecant
Integrands involving only cotangent
Integrands involving both sine and cosine
Integrands involving both sine and tangent
Integrands involving both cosine and tangent
Integrals containing both sine and cotangent
Integrands involving both cosine and cotangent
Integrands involving both secant and tangent
Integrals with symmetric limits
Integral over a full circle
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.