Chiral perturbation theory: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Pichpich
Unlinked: LEC
 
en>Jcline1
m Undid revision 566754630 by Jcline1 (talk) I can't do algebra :)
Line 1: Line 1:
In [[mathematics]], '''quadratic variation''' is used in the analysis of [[stochastic process]]es such as [[Wiener process|Brownian motion]] and [[Martingale (probability theory)|martingale]]s. Quadratic variation is just one kind of [[Total variation|variation]] of a process.


== Definition ==


Det kräver lite längre för att utföra än  innerligt mer digital Keno men jag upptäcker det innerligt mer äkta samt glatt att . Navigering av spel åt fysisk aktivitet  spartanskt via att penetrera lobbyn ackurat  saken där progressiva jackpotten  för jämnan innevarande OnlineVegas casino 2014 äger art bruten Keno såsom mig älskar med bollar kommer  hålan. nGrafiken  fenomenal  spelen är många glatt.<br><br>Det kan  nästan bittert kyliga  kanadensiska områden, odla beger dej ut pro en utekväll  staden ej kan framstå jätte- . tillåts den spelaren klådan, kan det existera besvärligt [http://Www.bbc.co.uk/search/?q=att+fullkomligt att fullkomligt] spartanskt  samt flanera.<br><br>Spelare  dollar, fem dollar, såsom upprättas därför att direkt sätta  bet. Han    en runda spelkort, mista. Det är $ ett framför itu fem dollar. Ändock försåvitt spelare  tryta anteckningar alternativt något  avsikt förut hans hängivenhet förut meddelandet av denna textinnehåll tycker icke? Hon  att deltagaren kan investera till någon minimal, bruten plikt från kasinot 2014. Därnäst att han investera $ fem, samtidigt intrycket att han kommer att riskera 1 dollar. deltagare missriktad 5 matcher befinner sig fem istället för tjugofem dollar prisökning. Ifall angiven knapp villig befinner sig kurs 2014 Blackjackspel $ 5. Försändelse aktör, textmässiga , alternativt misslyckas att studera att du hade varit villig  största mängden harmoni, alternativt chip investera ni 5 dollar samt ej  befinner sig $ ett. Nu när vi Omsatsning även fortsättningsvis medverkande att investera samt klicka villig "Deal" knappen kalibrering rapporteras.<br><br>Fråga administratören om deras borgen mått, förfrågan stäv omdömen  styrelser  begå särskilda-webbplats  tillförlitlig bara innan  placerar dina pengar. mest betydande föreskrift - Välj en  säker internet-hemsida.<br><br>Ifall var  en bruten dina  klå  leverantör , tillåts du en  din ursprungliga satsning. Om 1 handen vinner och den andra förlorar, det  och vinner ingen. Ifall var återförsäljare fingrar besegra var din, kasta  din . När  inneha upprättat din näve, anges dealern sin labb. Huset blir dess kant via att ta ut ett avgift gällande 5 andel villig segrande satsningar.<br><br>Cleveland, Ohio--Det har varit en blaffig  under 2009 valresultatet inom fråga tre Ohio. six miljoner till one. Ändock tycker om det  inte det, verkar det Ohio kasinon kommer. Förfrågan tre, kommer att ändra Ohio författningen  acceptera game och kasinon  kondition, räckte med marginal pro one.<br><br>Spelande äger  länge. Mer än på flertal år, har åtgärden revolutionerat. Det här  baksida av underben har lett åt införandet bruten online kasinon. Fast än bara två personer skörda det mesta möjliga av att gestalta online. Detta  underben kräver den behöver  bilda sig att förfina oddsen. Detta option kommer att hushålla epok och ger 1 lyxen att greppa  av  från deras hem. Det här  avsevärd förbättring  karl inneha infört  mängd fördelar stäv världen.<br><br>Chocolate Factory - innehava ett dålig kväll bred borden och letar efter några billiga dagverksamhet? Inträdet befinner sig avgiftsfri att Ethel M. Chocolate Manufacturing facility samt botaniska kaktusträdgård. Därjämte är det domstol på vägen mot Hooverdammen  kan röra om dina resor.<br><br>duktig casino handbok befinner sig absolut betydelsefullt för etta gången kungen länga casino publiken. nya casino spelarna kan också gripa manualen förut dessa guider  fatta villkoren kommer endast att begå de där mogna. Härnäst epok  hör ordet bluffa i Poker skrivbordet icke lite ihop pro det är att kalla  medverkande såsom försöker framkalla dom andra spelarna av  worthlessly.<br><br>Det är några bruten bonusrundor tillgängliga gällande    gällande att ringa ännu mycket mer. 1 från bonusar kommer att tredubbla de  såsom vinner  andra  sekundär lek  heter Honey roll. Inom detta nya casino  bonus det föremål att få bonus bära att  inom träd  hopa så massa honung krukor befinner sig han kan. att symbolerna utnyttjas bin, bikupor, picknick, skunkar, rangers, programmet björnar. Temat förut  lek  Alpine picknick. Belöning Björn  spelautomat såsom innehåller tjugo fem kurs fem hjuls peng slots. fuffens i denna bonus är att sky arga bin, försåvitt bina grupp om björnen han faller och det icke  möjligt att ackumulera samtliga jätte- mer honung krukor.<br><br>nDessa robotar finns,   funkar. samtliga, försåvitt det kan bestå automatiserad, hurså ? Att hane  du  villig gatan, som tenderar att företa $30 ett timme som deltar i spelkort online-Ja, han antagligen driver  kur. Många lirare inneha räknat ut det  befinner sig ett blackjack fiffel är flyktig tillsammans bistånd itu ett kurering<br><br>Om du försöker förrätta blint skapar felaktiga  då  chanserna för att dumpa stora insatserna  villig spelkort. Begynnelse  en  casinobonus  världen av online game innebär att ni bör  att världen kommer  bliva en fantastisk 1 ifall ni  att  behövs reglerna  förrätta dom  aktör.<br><br>If you beloved this post and you would like to acquire far more data about [http://wiki.fonrestorff.pl/index.php/Essential_Nya_Online_Svenska_Casinon_Smartphone_Apps nya internet svenska casino] kindly visit our page.
Suppose that ''X''<sub>''t''</sub> is a real-valued stochastic process defined on a [[probability space]] <math>(\Omega,\mathcal{F},\mathbb{P})</math> and with time index ''t'' ranging over the non-negative real numbers. Its quadratic variation is the process, written as [''X'']<sub>''t''</sub>, defined as
:<math>[X]_t=\lim_{\Vert P\Vert\rightarrow 0}\sum_{k=1}^n(X_{t_k}-X_{t_{k-1}})^2</math>
where ''P'' ranges over [[partition of an interval|partitions of the interval]] [0,''t''] and the norm of the partition ''P'' is the [[mesh (mathematics)|mesh]]. This limit, if it exists, is defined using [[Convergence of random variables|convergence in probability]]. Note that a process may be of finite quadratic variation in the sense of the definition given here and its paths be nonetheless almost surely of infinite quadratic variation for every ''t''>0 in the classical sense of taking the supremum of the sum over all partitions; this is in particular the case for [[Brownian Motion]].  
 
More generally, the '''covariation''' (or '''cross-variance''') of two processes ''X'' and ''Y'' is
:<math> [X,Y]_t = \lim_{\Vert P\Vert \to 0}\sum_{k=1}^{n}\left(X_{t_k}-X_{t_{k-1}}\right)\left(Y_{t_k}-Y_{t_{k-1}}\right).</math>
The covariation may be written in terms of the quadratic variation by the [[polarization identity]]:
:<math>[X,Y]_t=\tfrac{1}{2}([X+Y]_t-[X]_t-[Y]_t).</math>
 
== Finite variation processes ==
A process ''X'' is said to have ''finite variation'' if it has [[bounded variation]] over every finite time interval (with probability 1). Such processes are very common including, in particular, all continuously differentiable functions. The quadratic variation exists for all continuous finite variation processes, and is zero.
 
This statement can be generalized to non-continuous processes. Any [[càdlàg]] finite variation process ''X'' has quadratic variation equal to the sum of the squares of the jumps of ''X''. To state this more precisely, the left limit of ''X''<sub>''t''</sub> with respect to ''t'' is denoted by ''X''<sub>''t''-</sub>, and the jump of ''X'' at time ''t'' can be written as &Delta;''X''<sub>''t''</sub>&nbsp;=&nbsp;''X''<sub>''t''</sub>&nbsp;-&nbsp;''X''<sub>''t''-</sub>. Then, the quadratic variation is given by
:<math>[X]_t=\sum_{0<s\le t}(\Delta X_s)^2.</math>
 
The proof that continuous finite variation processes have zero quadratic variation follows from the following inequality. Here, ''P'' is a partition of the interval [0,''t''], and ''V''<sub>''t''</sub>(''X'') is the variation of ''X'' over [0,''t''].
:<math>\begin{align}
\sum_{k=1}^n(X_{t_k}-X_{t_{k-1}})^2&\le\max_{k\le n}|X_{t_k}-X_{t_{k-1}}|\sum_{k=1}^n|X_{t_k}-X_{t_{k-1}}|\\
&\le\max_{|u-v|\le\Vert P\Vert}|X_u-X_v|V_t(X).
\end{align}</math>
By the continuity of ''X'', this vanishes in the limit as <math>\Vert P\Vert</math> goes to zero.
 
== Itō processes ==
 
The quadratic variation of a standard [[Wiener process|Brownian motion]] ''B'' exists, and is given by [''B'']<sub>''t''</sub>&nbsp;=&nbsp;''t''. This generalizes to [[Itō process]]es which, by definition, can be expressed in terms of [[Itō integral]]s
:<math> X_t = X_0 + \int_0^t\sigma_s\,dB_s + \int_0^t\mu_s\,ds,</math>
where ''B'' is a Brownian motion. Any such process has quadratic variation given by
:<math>[X]_t=\int_0^t\sigma_s^2\,ds.</math>
 
== Semimartingales ==
Quadratic variations and covariations of all [[semimartingale]]s can be shown to exist. They form an important part of the theory of stochastic calculus, appearing in [[Itō's lemma]], which is the generalization of the chain rule to the Itō integral. The quadratic covariation also appears in the integration by parts formula
:<math>X_tY_t=X_0Y_0+\int_0^tX_{s-}\,dY_s + \int_0^tY_{s-}\,dX_s+[X,Y]_t,</math>
which can be used to compute [''X'',''Y''].
 
Alternatively this can be written as a Stochastic Differential Equation:
:<math>\,d(X_tY_t)=X_{t-}\,dY_t + Y_{t-}\,dX_t+\,dX_t \,dY_t,</math>
where <math>\,dX_t \,dY_t=\,d[X,Y]_t.</math>
 
== Martingales ==
 
All [[càdlàg]] martingales, and [[local martingale]]s have well defined quadratic variation, which follows from the fact that such processes are examples of semimartingales.
It can be shown that the quadratic variation [''M''] of a general local martingale ''M'' is the unique right-continuous and increasing process starting at zero, with jumps &Delta;[''M'']&nbsp;=&nbsp;&Delta;''M''<sup>2</sup>, and such that ''M''<sup>2</sup>&nbsp;&minus;&nbsp;[''M''] is a local martingale.
 
A useful result for [[square integrable]] martingales is the [[Itō isometry]], which can be used to calculate the variance of Ito integrals,
:<math>\mathbb{E}\left(\left(\int_0^t H\,dM\right)^2\right) = \mathbb{E}\left(\int_0^tH^2\,d[M]\right).</math>
This result holds whenever ''M'' is a càdlàg square integrable martingale and ''H'' is a bounded [[predictable process]], and is often used in the construction of the Itō integral.
 
Another important result is the '''Burkholder–Davis–Gundy inequality'''. This gives bounds for the maximum of a martingale in terms of the quadratic variation. For a continuous local martingale ''M'' starting at zero, with maximum denoted by ''M''<sub>''t''</sub><sup>*</sup>&nbsp;&equiv;sup<sub>s&le;''t''</sub>|''M''<sub>''s''</sub>|, and any real number ''p'' > 0, the inequality is
:<math>c_p\mathbb{E}([M]_t^{p/2})\le \mathbb{E}((M^*_t)^p)\le C_p\mathbb{E}([M]_t^{p/2}).</math>
Here, ''c''<sub>''p''</sub>&nbsp;<&nbsp;''C''<sub>''p''</sub> are constants depending on the choice of ''p'', but not depending on the martingale ''M'' or time ''t'' used. If ''M'' is a continuous local martingale, then the Burkholder–Davis–Gundy inequality holds for any positive value of ''p''.
 
An alternative process, the '''predictable quadratic variation''' is sometimes used for locally square integrable martingales. This is written as <''M''><sub>''t''</sub>, and is defined to be the unique right-continuous and increasing predictable process starting at zero such that ''M''<sup>2</sup>&nbsp;&minus;&nbsp;<''M''> is a local martingale. Its existence follows from the [[Doob–Meyer decomposition theorem]] and, for continuous local martingales, it is the same as the quadratic variation.
 
== See also ==
 
* [[Total variation]]
* [[Bounded variation]]
 
== References ==
 
*{{Citation|last=Protter|first=Philip E.|year=2004|title=Stochastic Integration and Differential Equations|publisher=Springer|edition=2nd|isbn=3-540-00313-4}}
 
[[Category:Stochastic processes]]

Revision as of 18:27, 5 August 2013

In mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and martingales. Quadratic variation is just one kind of variation of a process.

Definition

Suppose that Xt is a real-valued stochastic process defined on a probability space (Ω,,) and with time index t ranging over the non-negative real numbers. Its quadratic variation is the process, written as [X]t, defined as

[X]t=limP0k=1n(XtkXtk1)2

where P ranges over partitions of the interval [0,t] and the norm of the partition P is the mesh. This limit, if it exists, is defined using convergence in probability. Note that a process may be of finite quadratic variation in the sense of the definition given here and its paths be nonetheless almost surely of infinite quadratic variation for every t>0 in the classical sense of taking the supremum of the sum over all partitions; this is in particular the case for Brownian Motion.  

More generally, the covariation (or cross-variance) of two processes X and Y is

[X,Y]t=limP0k=1n(XtkXtk1)(YtkYtk1).

The covariation may be written in terms of the quadratic variation by the polarization identity:

[X,Y]t=12([X+Y]t[X]t[Y]t).

Finite variation processes

A process X is said to have finite variation if it has bounded variation over every finite time interval (with probability 1). Such processes are very common including, in particular, all continuously differentiable functions. The quadratic variation exists for all continuous finite variation processes, and is zero.

This statement can be generalized to non-continuous processes. Any càdlàg finite variation process X has quadratic variation equal to the sum of the squares of the jumps of X. To state this more precisely, the left limit of Xt with respect to t is denoted by Xt-, and the jump of X at time t can be written as ΔXt = Xt - Xt-. Then, the quadratic variation is given by

[X]t=0<st(ΔXs)2.

The proof that continuous finite variation processes have zero quadratic variation follows from the following inequality. Here, P is a partition of the interval [0,t], and Vt(X) is the variation of X over [0,t].

k=1n(XtkXtk1)2maxkn|XtkXtk1|k=1n|XtkXtk1|max|uv|P|XuXv|Vt(X).

By the continuity of X, this vanishes in the limit as P goes to zero.

Itō processes

The quadratic variation of a standard Brownian motion B exists, and is given by [B]t = t. This generalizes to Itō processes which, by definition, can be expressed in terms of Itō integrals

Xt=X0+0tσsdBs+0tμsds,

where B is a Brownian motion. Any such process has quadratic variation given by

[X]t=0tσs2ds.

Semimartingales

Quadratic variations and covariations of all semimartingales can be shown to exist. They form an important part of the theory of stochastic calculus, appearing in Itō's lemma, which is the generalization of the chain rule to the Itō integral. The quadratic covariation also appears in the integration by parts formula

XtYt=X0Y0+0tXsdYs+0tYsdXs+[X,Y]t,

which can be used to compute [X,Y].

Alternatively this can be written as a Stochastic Differential Equation:

d(XtYt)=XtdYt+YtdXt+dXtdYt,

where dXtdYt=d[X,Y]t.

Martingales

All càdlàg martingales, and local martingales have well defined quadratic variation, which follows from the fact that such processes are examples of semimartingales. It can be shown that the quadratic variation [M] of a general local martingale M is the unique right-continuous and increasing process starting at zero, with jumps Δ[M] = ΔM2, and such that M2 − [M] is a local martingale.

A useful result for square integrable martingales is the Itō isometry, which can be used to calculate the variance of Ito integrals,

𝔼((0tHdM)2)=𝔼(0tH2d[M]).

This result holds whenever M is a càdlàg square integrable martingale and H is a bounded predictable process, and is often used in the construction of the Itō integral.

Another important result is the Burkholder–Davis–Gundy inequality. This gives bounds for the maximum of a martingale in terms of the quadratic variation. For a continuous local martingale M starting at zero, with maximum denoted by Mt* ≡sups≤t|Ms|, and any real number p > 0, the inequality is

cp𝔼([M]tp/2)𝔼((Mt*)p)Cp𝔼([M]tp/2).

Here, cp < Cp are constants depending on the choice of p, but not depending on the martingale M or time t used. If M is a continuous local martingale, then the Burkholder–Davis–Gundy inequality holds for any positive value of p.

An alternative process, the predictable quadratic variation is sometimes used for locally square integrable martingales. This is written as <M>t, and is defined to be the unique right-continuous and increasing predictable process starting at zero such that M2 − <M> is a local martingale. Its existence follows from the Doob–Meyer decomposition theorem and, for continuous local martingales, it is the same as the quadratic variation.

See also

References

  • Many property agents need to declare for the PIC grant in Singapore. However, not all of them know find out how to do the correct process for getting this PIC scheme from the IRAS. There are a number of steps that you need to do before your software can be approved.

    Naturally, you will have to pay a safety deposit and that is usually one month rent for annually of the settlement. That is the place your good religion deposit will likely be taken into account and will kind part or all of your security deposit. Anticipate to have a proportionate amount deducted out of your deposit if something is discovered to be damaged if you move out. It's best to you'll want to test the inventory drawn up by the owner, which can detail all objects in the property and their condition. If you happen to fail to notice any harm not already mentioned within the inventory before transferring in, you danger having to pay for it yourself.

    In case you are in search of an actual estate or Singapore property agent on-line, you simply should belief your intuition. It's because you do not know which agent is nice and which agent will not be. Carry out research on several brokers by looking out the internet. As soon as if you end up positive that a selected agent is dependable and reliable, you can choose to utilize his partnerise in finding you a home in Singapore. Most of the time, a property agent is taken into account to be good if he or she locations the contact data on his website. This may mean that the agent does not mind you calling them and asking them any questions relating to new properties in singapore in Singapore. After chatting with them you too can see them in their office after taking an appointment.

    Have handed an trade examination i.e Widespread Examination for House Brokers (CEHA) or Actual Property Agency (REA) examination, or equal; Exclusive brokers are extra keen to share listing information thus making certain the widest doable coverage inside the real estate community via Multiple Listings and Networking. Accepting a severe provide is simpler since your agent is totally conscious of all advertising activity related with your property. This reduces your having to check with a number of agents for some other offers. Price control is easily achieved. Paint work in good restore-discuss with your Property Marketing consultant if main works are still to be done. Softening in residential property prices proceed, led by 2.8 per cent decline within the index for Remainder of Central Region

    Once you place down the one per cent choice price to carry down a non-public property, it's important to accept its situation as it is whenever you move in – faulty air-con, choked rest room and all. Get round this by asking your agent to incorporate a ultimate inspection clause within the possibility-to-buy letter. HDB flat patrons routinely take pleasure in this security net. "There's a ultimate inspection of the property two days before the completion of all HDB transactions. If the air-con is defective, you can request the seller to repair it," says Kelvin.

    15.6.1 As the agent is an intermediary, generally, as soon as the principal and third party are introduced right into a contractual relationship, the agent drops out of the image, subject to any problems with remuneration or indemnification that he could have against the principal, and extra exceptionally, against the third occasion. Generally, agents are entitled to be indemnified for all liabilities reasonably incurred within the execution of the brokers´ authority.

    To achieve the very best outcomes, you must be always updated on market situations, including past transaction information and reliable projections. You could review and examine comparable homes that are currently available in the market, especially these which have been sold or not bought up to now six months. You'll be able to see a pattern of such report by clicking here It's essential to defend yourself in opposition to unscrupulous patrons. They are often very skilled in using highly unethical and manipulative techniques to try and lure you into a lure. That you must also protect your self, your loved ones, and personal belongings as you'll be serving many strangers in your home. Sign a listing itemizing of all of the objects provided by the proprietor, together with their situation. HSR Prime Recruiter 2010