List of integrals of exponential functions: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Blah314
 
Undid revision 582340425 by 203.110.246.22 (talk) Because this revision removed an entire section of integrals that was very useful. Not sure why anyone would do that.
Line 1: Line 1:
Jerrie is what you can call me but Simply put i don't like when somebody use my full company. My wife and I chose to reside in Massachusetts. What I love doing is always to play croquet now I have time period to take on new things. The job I've been occupying suitable for years is an sequence clerk. See what's new on a few website here: http://prometeu.net<br><br>Visit my homepage - [http://prometeu.net clash of clans cheats ipad gems]
The following is a list of [[integral]]s ([[antiderivative]] functions) of [[logarithmic function]]s. For a complete list of integral functions, see [[list of integrals]].
 
''Note:'' ''x''&gt;0 is assumed throughout this article, and the [[constant of integration]] is omitted for simplicity.
 
: <math>\int\ln ax\;dx = x\ln ax - x</math>
 
: <math>\int\ln (ax + b)\;dx = \frac{(ax+b)\ln(ax+b) - ax}{a}</math>
 
: <math>\int (\ln x)^2\; dx = x(\ln x)^2 - 2x\ln x + 2x</math>
 
: <math>\int (\ln x)^n\; dx = x\sum^{n}_{k=0}(-1)^{n-k} \frac{n!}{k!}(\ln x)^k</math>
 
: <math>\int \frac{dx}{\ln x} = \ln|\ln x| + \ln x + \sum^\infty_{k=2}\frac{(\ln x)^k}{k\cdot k!}</math>
 
: <math>\int \frac{dx}{(\ln x)^n} = -\frac{x}{(n-1)(\ln x)^{n-1}} + \frac{1}{n-1}\int\frac{dx}{(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>
 
: <math>\int x^m\ln x\;dx = x^{m+1}\left(\frac{\ln x}{m+1}-\frac{1}{(m+1)^2}\right) \qquad\mbox{(for }m\neq -1\mbox{)}</math>
 
: <math>\int x^m (\ln x)^n\; dx = \frac{x^{m+1}(\ln x)^n}{m+1} - \frac{n}{m+1}\int x^m (\ln x)^{n-1} dx  \qquad\mbox{(for }m\neq -1\mbox{)}</math>
 
: <math>\int \frac{(\ln x)^n\; dx}{x} = \frac{(\ln x)^{n+1}}{n+1}  \qquad\mbox{(for }n\neq -1\mbox{)}</math>
 
: <math>\int \frac{\ln{x^n}\;dx}{x} = \frac{(\ln{x^n})^2}{2n} \qquad\mbox{(for }n\neq 0\mbox{)} </math>
 
: <math>\int \frac{\ln x\,dx}{x^m} = -\frac{\ln x}{(m-1)x^{m-1}}-\frac{1}{(m-1)^2 x^{m-1}} \qquad\mbox{(for }m\neq 1\mbox{)}</math>
 
: <math>\int \frac{(\ln x)^n\; dx}{x^m} = -\frac{(\ln x)^n}{(m-1)x^{m-1}} + \frac{n}{m-1}\int\frac{(\ln x)^{n-1} dx}{x^m} \qquad\mbox{(for }m\neq 1\mbox{)}</math>
 
: <math>\int \frac{x^m\; dx}{(\ln x)^n} = -\frac{x^{m+1}}{(n-1)(\ln x)^{n-1}} + \frac{m+1}{n-1}\int\frac{x^m dx}{(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>
 
: <math>\int \frac{dx}{x\ln x} = \ln \left|\ln x\right|</math>
 
: <math>\int \frac{dx}{x^n\ln x} = \ln \left|\ln x\right| + \sum^\infty_{k=1} (-1)^k\frac{(n-1)^k(\ln x)^k}{k\cdot k!}</math>
 
: <math>\int \frac{dx}{x(\ln x)^n} = -\frac{1}{(n-1)(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>
 
: <math>\int \ln(x^2+a^2)\; dx = x\ln(x^2+a^2)-2x+2a\tan^{-1} \frac{x}{a}</math>
 
: <math>\int \frac{x}{x^2+a^2}\ln(x^2+a^2)\; dx = \frac{1}{4} \ln^2(x^2+a^2)</math>
 
: <math>\int \sin (\ln x)\;dx = \frac{x}{2}(\sin (\ln x) - \cos (\ln x))</math>
 
: <math>\int \cos (\ln x)\;dx = \frac{x}{2}(\sin (\ln x) + \cos (\ln x))</math>
 
: <math>\int e^x \left(x \ln x - x - \frac{1}{x}\right)\;dx = e^x (x \ln x - x - \ln x) </math>
 
: <math>\int \frac{1}{e^x} \left( \frac{1}{x}-\ln x \right)\;dx = \frac{\ln x}{e^x} </math>
 
: <math>\int e^x \left( \frac{1}{\ln x}- \frac{1}{x\ln^2 x} \right)\;dx = \frac{e^x}{\ln x} </math>
 
For <math>n</math> consecutive integrations, the formula
 
: <math>\int\ln x\;dx = x\;(\ln x - 1) +C_{0} </math>  
 
generalizes to
 
: <math>\int\cdot\cdot\cdot\int\ln x\;dx\cdot\cdot\cdot\;dx    =  \frac{x^{n}}{n!}\left(\ln\,x-\sum_{k=1}^{n}\frac{1}{k}\right)+ \sum_{k=0}^{n-1} C_{k} \frac{x^{k}}{k!} </math>
 
== References ==
* [[Milton Abramowitz]] and [[Irene A. Stegun]], ''[[Abramowitz and Stegun|Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]]'', 1964. A few integrals are listed on [http://www.math.sfu.ca/~cbm/aands/page_69.htm page 69].
 
{{Lists of integrals}}
 
[[Category:Integrals|Logarithmic functions]]
[[Category:Mathematics-related lists|Integrals of logarithmic functions]]

Revision as of 23:23, 21 November 2013

The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals.

Note: x>0 is assumed throughout this article, and the constant of integration is omitted for simplicity.

lnaxdx=xlnaxx
ln(ax+b)dx=(ax+b)ln(ax+b)axa
(lnx)2dx=x(lnx)22xlnx+2x
(lnx)ndx=xk=0n(1)nkn!k!(lnx)k
dxlnx=ln|lnx|+lnx+k=2(lnx)kkk!
dx(lnx)n=x(n1)(lnx)n1+1n1dx(lnx)n1(for n1)
xmlnxdx=xm+1(lnxm+11(m+1)2)(for m1)
xm(lnx)ndx=xm+1(lnx)nm+1nm+1xm(lnx)n1dx(for m1)
(lnx)ndxx=(lnx)n+1n+1(for n1)
lnxndxx=(lnxn)22n(for n0)
lnxdxxm=lnx(m1)xm11(m1)2xm1(for m1)
(lnx)ndxxm=(lnx)n(m1)xm1+nm1(lnx)n1dxxm(for m1)
xmdx(lnx)n=xm+1(n1)(lnx)n1+m+1n1xmdx(lnx)n1(for n1)
dxxlnx=ln|lnx|
dxxnlnx=ln|lnx|+k=1(1)k(n1)k(lnx)kkk!
dxx(lnx)n=1(n1)(lnx)n1(for n1)
ln(x2+a2)dx=xln(x2+a2)2x+2atan1xa
xx2+a2ln(x2+a2)dx=14ln2(x2+a2)
sin(lnx)dx=x2(sin(lnx)cos(lnx))
cos(lnx)dx=x2(sin(lnx)+cos(lnx))
ex(xlnxx1x)dx=ex(xlnxxlnx)
1ex(1xlnx)dx=lnxex
ex(1lnx1xln2x)dx=exlnx

For n consecutive integrations, the formula

lnxdx=x(lnx1)+C0

generalizes to

lnxdxdx=xnn!(lnxk=1n1k)+k=0n1Ckxkk!

References

Template:Lists of integrals