Operand: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>EmausBot
m r2.7.2+) (Robot: Adding ca:Operand
 
No edit summary
Line 1: Line 1:
My name is Branden Peake but everybody calls me Branden. I'm from United States. I'm studying at the college (1st year) and I play the Bass Guitar for 9 years. Usually I choose songs from the famous films :D. <br>I have two brothers. I like Gongoozling, watching movies and Chess.<br><br>Also visit my website ... [http://Www.playnarutogames.net/profile/denba.htm how To get free fifa 15 coins]
An '''order of magnitude''' is a scale of [[numbers]] with a fixed [[Geometric progression|ratio]], often [[rounded]] to the nearest ten. 
 
The orders of magnitude are written in [[powers of ten]]. For example, the order of magnitude of 1500 is 3, since 1500 may be written as 1.5 × 10<sup>3</sup>.
 
[[Differences]] in order of magnitude can be [[measured]] on the [[logarithmic scale]] in "[[Decade (log scale)|decades]]" (i.e., factors of ten).<ref>{{cite web
|url        = http://public.wsu.edu/~brians/errors/orders.html
|title      = Orders of Magnitude
|last      = Brians
|first      = Paus
|accessdate = 5/9/2013
}}</ref> Examples of numbers of different magnitudes can be found at [[Orders of magnitude (numbers)]].
 
{{quotation|We say two numbers have the same order of magnitude of a number if the big one divided by the little one is less than 10. For example, 23 and 82 have the same order of magnitude, but 23 and 820 do not."<ref>[[John_Baez|John C. Baez]], 11/28/2012</ref> — [[John Baez]]}}
 
==Uses==
 
Orders of magnitude are used to make approximate comparisons. If numbers differ by 1 order of magnitude, ''x'' is ''about'' ten times different in quantity than ''y''.  If values differ by 2 orders of magnitude, they differ by a factor of about [[100 (number)|100]]. Two numbers of the same order of magnitude have roughly the same scale: the larger value is less than ten times the smaller value.
 
{| class="wikitable"
! In words<br>([[Long and short scales|long scale]])
! In words<br>([[Long and short scales|short scale]])
! Prefix
! Symbol
! Decimal
! [[Exponent#Powers of ten|Power]]<br />of&nbsp;ten
! Order&nbsp;of<br />magnitude
|-
| quadrillionth
| septillionth
| yocto-
| y
| 0.000,000,000,000,000,000,000,001
| 10<sup>−24</sup>
| −24
|-
| trilliardth
| sextillionth
| zepto-
| z
| 0.000,000,000,000,000,000,001
| 10<sup>−21</sup>
| −21
|-
| trillionth
| quintillionth
| atto-
| a
| 0.000,000,000,000,000,001
| 10<sup>−18</sup>
| −18
|-
| billiardth
| quadrillionth
| femto-
| f
| 0.000,000,000,000,001
| 10<sup>−15</sup>
| −15
|-
| billionth
| trillionth
| pico-
| p
| 0.000,000,000,001
| 10<sup>−12</sup>
| −12
|-
| milliardth
| billionth
| nano-
| n
| 0.000,000,001
| 10<sup>−9</sup>
| −9
|-
| millionth
| millionth
| micro-
| <nowiki>µ</nowiki>
| 0.000,001
| 10<sup>−6</sup>
| −6
|-
| thousandth
| thousandth
| milli-
| m
| 0.001
| 10<sup>−3</sup>
| −3
|-
| hundredth
| hundredth
| centi-
| c
| 0.01
| 10<sup>−2</sup>
| −2
|-
| tenth
| tenth
| deci-
| d
| 0.1
| 10<sup>−1</sup>
| −1
|-
| one
| one
| –
| –
| 1
| 10<sup>0</sup>
| 0
|-
| ten
| ten
| deca-
| da
| 10
| 10<sup>1</sup>
| 1
|-
| hundred
| hundred
| hecto-
| h
| 100
| 10<sup>2</sup>
| 2
|-
| thousand
| thousand
| kilo-
| k
| 1,000
| 10<sup>3</sup>
| 3
|-
| million
| million
| mega-
| M
| 1,000,000
| 10<sup>6</sup>
| 6
|-
| milliard
| billion
| giga-
| G
| 1,000,000,000
| 10<sup>9</sup>
| 9
|-
| billion
| trillion
| tera-
| T
| 1,000,000,000,000
| 10<sup>12</sup>
| 12
|-
| billiard
| quadrillion
| peta-
| P
| 1,000,000,000,000,000
| 10<sup>15</sup>
| 15
|-
| trillion
| quintillion
| exa-
| E
| 1,000,000,000,000,000,000
| 10<sup>18</sup>
| 18
|-
| trilliard
| sextillion
| zetta-
| Z
| 1,000,000,000,000,000,000,000
| 10<sup>21</sup>
| 21
|-
| quadrillion
| septillion
| yotta-
| Y
| 1,000,000,000,000,000,000,000,000
| 10<sup>24</sup>
| 24
|}
 
The '''order of magnitude of a number''' is, intuitively speaking, the number of powers of 10 contained in the number.  More precisely, the order of magnitude of a number can be defined in terms of the [[common logarithm]], usually as the [[integer]] part of the logarithm, obtained by [[truncation]].  For example, the number 4,000,000 has a logarithm (in base 10) of 6.602; its order of magnitude is 6.  When truncating, a number of this order of magnitude is between 10<sup>6</sup> and 10<sup>7</sup>. In a similar example, with the phrase "He had a seven-figure income", the order of magnitude is the number of figures minus one, so it is very easily determined without a calculator to be 6. An order of magnitude is an approximate position on a [[logarithmic scale]].
 
An '''order-of-magnitude estimate''' of a variable whose precise value is unknown is an estimate [[Rounding|rounded]] to the nearest power of ten.  For example, an order-of-magnitude estimate for a variable between about 3 billion and 30 billion (such as the [[human]] [[population]] of the [[Earth]]) is 10 [[1000000000 (number)|billion]]. To round a number to its nearest order of magnitude, one rounds its logarithm to the nearest integer.  Thus 4,000,000, which has a logarithm (in base 10) of 6.602, has 7 as its nearest order of magnitude, because "nearest" implies rounding rather than truncation.  For a number written in scientific notation, this logarithmic rounding scale requires rounding up to the next power of ten when the multiplier is greater than the square root of ten (about 3.162). For example, the nearest order of magnitude for 1.7&nbsp;×&nbsp;10<sup>8</sup> is 8, whereas the nearest order of magnitude for 3.7&nbsp;×&nbsp;10<sup>8</sup> is 9. An order-of-magnitude estimate is sometimes also called a [[zeroth order approximation]].
 
An '''order-of-magnitude difference''' between two values is a factor of 10.  For example, the mass of the planet [[Saturn]] is 95 times that of [[Earth]], so Saturn is ''two orders of magnitude'' more massive than Earth.  Order-of-magnitude differences are called '''[[decade (log scale)|decades]]''' when measured on a [[logarithmic scale]].
 
==Non-decimal orders of magnitude==
{{see also|Logarithmic scale}}
Other orders of magnitude may be calculated using [[Radix|bases]] other than 10. The ancient Greeks ranked the nighttime brightness of celestial bodies by 6 levels in which each level was the fifth root of one hundred (about 2.512) as bright as the nearest weaker level of brightness{{citation needed|date=July 2013}}, so that the brightest level is 5 '''orders of magnitude''' brighter than the weakest, which can also be stated as a '''factor''' of 100 times brighter.
 
The different [[decimal]] [[numeral systems]] of the world use a larger base to better envision the size of the number, and have created names for the powers of this larger base. The table shows  what number the order of magnitude aim at for base 10 and for base 1,000,000. It can be seen that the order of magnitude is included in the number name in this example, because bi- means 2 and tri- means 3 (these make sense in the long scale only), and the suffix -illion tells that the base is 1,000,000. But the number names billion, trillion themselves (here with [[Long and short scales|other meaning]] than in the first chapter) are not names of the ''orders of'' magnitudes, they are names of "magnitudes", that is the ''numbers'' 1,000,000,000,000 etc. 
 
{| class="wikitable"
! order of magnitude !! is [[Common logarithm|log<sub>10</sub>]] of !! is log<sub>1000000</sub> of !! short scale !! long scale
|-
| 1 || 10 || 1,000,000 || million || million
|-
| 2 || 100 || 1,000,000,000,000 || trillion || billion
|-
| 3 || 1000 || 1,000,000,000,000,000,000 || quintillion || trillion
|}
 
[[SI]] units in the table at right are used together with [[SI prefix]]es, which were devised with mainly base 1000 magnitudes in mind. [[Binary prefix#IEC standard prefixes|The IEC standard prefixes]] with base 1024 were invented for use in electronic technology.
 
The ancient [[apparent magnitude]]s for the brightness of stars uses the base <math>\sqrt[5]{100} \approx 2.512</math> and is reversed. The modernized version has however turned into a logarithmic scale with non-integer values.
 
===Extremely large numbers===
For extremely [[large numbers]], a generalized order of magnitude can be based on their [[Logarithm#Inverses of other exponential functions|double logarithm]] or [[super-logarithm]]. Rounding these downward to an integer gives categories between very "round numbers", rounding them to the nearest integer and applying the inverse function gives the "nearest" round number.
 
The double logarithm yields the categories:
: ..., 1.0023–1.023, 1.023–1.26, 1.26–10, 10–10<sup>10</sup>, 10<sup>10</sup>–10<sup>100</sup>, 10<sup>100</sup>–10<sup>1000</sup>, ...
(the first two mentioned, and the extension to the left, may not be very useful, they merely demonstrate how the sequence mathematically continues to the left).
 
The super-logarithm yields the categories:
: <math>0-1, 1-10, 10-10^{10}, 10^{10}-10^{10^{10}}, 10^{10^{10}}-10^{10^{10^{10}}}, \dots</math>, or
 
:negative numbers, 0–1, 1–10, 10–1e10, 1e10–10<sup>1e10</sup>, 10<sup>1e10</sup>–<sup>4</sup>10, <sup>4</sup>10–<sup>5</sup>10, etc. (see [[tetration]])
 
The "midpoints" which determine which round number is nearer are in the first case:
:1.076, 2.071, 1453, 4.20e31, 1.69e316,...
and, depending on the interpolation method, in the second case
:−.301, .5, 3.162, 1453, 1e1453, <math>(10 \uparrow)^1 10^{1453}</math>, <math>(10 \uparrow)^2 10^{1453}</math>,... (see [[Large numbers#Standardized system of writing very large numbers|notation of extremely large numbers]])
 
For extremely small numbers (in the sense of close to zero) neither method is suitable directly, but of course the generalized order of magnitude of the [[Reciprocal (mathematics)|reciprocal]] can be considered.
 
Similar to the [[logarithmic scale#Graphic representation|logarithmic scale]] one can have a double logarithmic scale (example provided [[Graphical timeline from Big Bang to Heat Death|here]]) and super-logarithmic scale. The intervals above all have the same length on them, with the "midpoints" actually midway. More generally, a point midway between two points corresponds to the [[generalised f-mean]] with ''f''(''x'') the corresponding function log log ''x'' or slog ''x''. In the case of log log ''x'', this mean of two numbers (e.g. 2 and 16 giving 4) does not depend on the base of the logarithm, just like in the case of log ''x'' ([[geometric mean]], 2 and 8 giving 4), but unlike in the case of log log log ''x'' (4 and 65536 giving 16 if the base is 2, but, otherwise).
 
==See also==
* [[Big O notation]]
* [[Decibel]]
* [[Names of large numbers]]
* [[Names of small numbers]]
* [[Number sense]]
* [[Orders of approximation]]
* [[Orders of magnitude (numbers)]]
 
==References==
 
<references />
 
==Further reading==
* [[Isaac Asimov|Asimov, Isaac]] ''The Measure of the Universe'' (1988)
 
==External links==
*[http://htwins.net/scale2/ The Scale of the Universe 2 ] Interactive tool from [[Planck length]] 10<sup>−35</sup> meters to universe size 10<sup>27</sup>
*[http://www.shekpvar.net/~dna/Publications/Cosmos/cosmos.html Cosmos &ndash; an Illustrated Dimensional Journey from microcosmos to macrocosmos] &ndash; from Digital Nature Agency
*[http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/index.html Powers of 10], a graphic animated illustration that starts with a view of the [[Milky Way]] at 10<sup>23</sup> meters and ends with [[subatomic particle]]s at 10<sup>−16</sup> meters.
*[http://www.vendian.org/envelope/TemporaryURL/what_is_oom.html What is Order of Magnitude?]
 
{{orders of magnitude wide}}
 
{{DEFAULTSORT:Order Of Magnitude}}
[[Category:Orders of magnitude| ]]
[[Category:Elementary mathematics]]

Revision as of 09:13, 1 December 2013

An order of magnitude is a scale of numbers with a fixed ratio, often rounded to the nearest ten.

The orders of magnitude are written in powers of ten. For example, the order of magnitude of 1500 is 3, since 1500 may be written as 1.5 × 103.

Differences in order of magnitude can be measured on the logarithmic scale in "decades" (i.e., factors of ten).[1] Examples of numbers of different magnitudes can be found at Orders of magnitude (numbers).

36 year-old Diving Instructor (Open water ) Vancamp from Kuujjuaq, spends time with pursuits for instance gardening, public listed property developers in singapore developers in singapore and cigar smoking. Of late took some time to go China Danxia.

Uses

Orders of magnitude are used to make approximate comparisons. If numbers differ by 1 order of magnitude, x is about ten times different in quantity than y. If values differ by 2 orders of magnitude, they differ by a factor of about 100. Two numbers of the same order of magnitude have roughly the same scale: the larger value is less than ten times the smaller value.

In words
(long scale)
In words
(short scale)
Prefix Symbol Decimal Power
of ten
Order of
magnitude
quadrillionth septillionth yocto- y 0.000,000,000,000,000,000,000,001 10−24 −24
trilliardth sextillionth zepto- z 0.000,000,000,000,000,000,001 10−21 −21
trillionth quintillionth atto- a 0.000,000,000,000,000,001 10−18 −18
billiardth quadrillionth femto- f 0.000,000,000,000,001 10−15 −15
billionth trillionth pico- p 0.000,000,000,001 10−12 −12
milliardth billionth nano- n 0.000,000,001 10−9 −9
millionth millionth micro- µ 0.000,001 10−6 −6
thousandth thousandth milli- m 0.001 10−3 −3
hundredth hundredth centi- c 0.01 10−2 −2
tenth tenth deci- d 0.1 10−1 −1
one one 1 100 0
ten ten deca- da 10 101 1
hundred hundred hecto- h 100 102 2
thousand thousand kilo- k 1,000 103 3
million million mega- M 1,000,000 106 6
milliard billion giga- G 1,000,000,000 109 9
billion trillion tera- T 1,000,000,000,000 1012 12
billiard quadrillion peta- P 1,000,000,000,000,000 1015 15
trillion quintillion exa- E 1,000,000,000,000,000,000 1018 18
trilliard sextillion zetta- Z 1,000,000,000,000,000,000,000 1021 21
quadrillion septillion yotta- Y 1,000,000,000,000,000,000,000,000 1024 24

The order of magnitude of a number is, intuitively speaking, the number of powers of 10 contained in the number. More precisely, the order of magnitude of a number can be defined in terms of the common logarithm, usually as the integer part of the logarithm, obtained by truncation. For example, the number 4,000,000 has a logarithm (in base 10) of 6.602; its order of magnitude is 6. When truncating, a number of this order of magnitude is between 106 and 107. In a similar example, with the phrase "He had a seven-figure income", the order of magnitude is the number of figures minus one, so it is very easily determined without a calculator to be 6. An order of magnitude is an approximate position on a logarithmic scale.

An order-of-magnitude estimate of a variable whose precise value is unknown is an estimate rounded to the nearest power of ten. For example, an order-of-magnitude estimate for a variable between about 3 billion and 30 billion (such as the human population of the Earth) is 10 billion. To round a number to its nearest order of magnitude, one rounds its logarithm to the nearest integer. Thus 4,000,000, which has a logarithm (in base 10) of 6.602, has 7 as its nearest order of magnitude, because "nearest" implies rounding rather than truncation. For a number written in scientific notation, this logarithmic rounding scale requires rounding up to the next power of ten when the multiplier is greater than the square root of ten (about 3.162). For example, the nearest order of magnitude for 1.7 × 108 is 8, whereas the nearest order of magnitude for 3.7 × 108 is 9. An order-of-magnitude estimate is sometimes also called a zeroth order approximation.

An order-of-magnitude difference between two values is a factor of 10. For example, the mass of the planet Saturn is 95 times that of Earth, so Saturn is two orders of magnitude more massive than Earth. Order-of-magnitude differences are called decades when measured on a logarithmic scale.

Non-decimal orders of magnitude

DTZ's public sale group in Singapore auctions all forms of residential, workplace and retail properties, outlets, homes, lodges, boarding homes, industrial buildings and development websites. Auctions are at present held as soon as a month.

We will not only get you a property at a rock-backside price but also in an space that you've got longed for. You simply must chill out back after giving us the accountability. We will assure you 100% satisfaction. Since we now have been working in the Singapore actual property market for a very long time, we know the place you may get the best property at the right price. You will also be extremely benefited by choosing us, as we may even let you know about the precise time to invest in the Singapore actual property market.

The Hexacube is offering new ec launch singapore business property for sale Singapore investors want to contemplate. Residents of the realm will likely appreciate that they'll customize the business area that they wish to purchase as properly. This venture represents one of the crucial expansive buildings offered in Singapore up to now. Many investors will possible want to try how they will customise the property that they do determine to buy by means of here. This location has offered folks the prospect that they should understand extra about how this course of can work as well.

Singapore has been beckoning to traders ever since the value of properties in Singapore started sky rocketing just a few years again. Many businesses have their places of work in Singapore and prefer to own their own workplace area within the country once they decide to have a everlasting office. Rentals in Singapore in the corporate sector can make sense for some time until a business has discovered a agency footing. Finding Commercial Property Singapore takes a variety of time and effort but might be very rewarding in the long term.

is changing into a rising pattern among Singaporeans as the standard of living is increasing over time and more Singaporeans have abundance of capital to invest on properties. Investing in the personal properties in Singapore I would like to applaud you for arising with such a book which covers the secrets and techniques and tips of among the profitable Singapore property buyers. I believe many novice investors will profit quite a bit from studying and making use of some of the tips shared by the gurus." – Woo Chee Hoe Special bonus for consumers of Secrets of Singapore Property Gurus Actually, I can't consider one other resource on the market that teaches you all the points above about Singapore property at such a low value. Can you? Condominium For Sale (D09) – Yong An Park For Lease

In 12 months 2013, c ommercial retails, shoebox residences and mass market properties continued to be the celebrities of the property market. Models are snapped up in report time and at document breaking prices. Builders are having fun with overwhelming demand and patrons need more. We feel that these segments of the property market are booming is a repercussion of the property cooling measures no.6 and no. 7. With additional buyer's stamp responsibility imposed on residential properties, buyers change their focus to commercial and industrial properties. I imagine every property purchasers need their property funding to understand in value. Other orders of magnitude may be calculated using bases other than 10. The ancient Greeks ranked the nighttime brightness of celestial bodies by 6 levels in which each level was the fifth root of one hundred (about 2.512) as bright as the nearest weaker level of brightnessPotter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park., so that the brightest level is 5 orders of magnitude brighter than the weakest, which can also be stated as a factor of 100 times brighter.

The different decimal numeral systems of the world use a larger base to better envision the size of the number, and have created names for the powers of this larger base. The table shows what number the order of magnitude aim at for base 10 and for base 1,000,000. It can be seen that the order of magnitude is included in the number name in this example, because bi- means 2 and tri- means 3 (these make sense in the long scale only), and the suffix -illion tells that the base is 1,000,000. But the number names billion, trillion themselves (here with other meaning than in the first chapter) are not names of the orders of magnitudes, they are names of "magnitudes", that is the numbers 1,000,000,000,000 etc.

order of magnitude is log10 of is log1000000 of short scale long scale
1 10 1,000,000 million million
2 100 1,000,000,000,000 trillion billion
3 1000 1,000,000,000,000,000,000 quintillion trillion

SI units in the table at right are used together with SI prefixes, which were devised with mainly base 1000 magnitudes in mind. The IEC standard prefixes with base 1024 were invented for use in electronic technology.

The ancient apparent magnitudes for the brightness of stars uses the base 10052.512 and is reversed. The modernized version has however turned into a logarithmic scale with non-integer values.

Extremely large numbers

For extremely large numbers, a generalized order of magnitude can be based on their double logarithm or super-logarithm. Rounding these downward to an integer gives categories between very "round numbers", rounding them to the nearest integer and applying the inverse function gives the "nearest" round number.

The double logarithm yields the categories:

..., 1.0023–1.023, 1.023–1.26, 1.26–10, 10–1010, 1010–10100, 10100–101000, ...

(the first two mentioned, and the extension to the left, may not be very useful, they merely demonstrate how the sequence mathematically continues to the left).

The super-logarithm yields the categories:

01,110,101010,1010101010,10101010101010,, or
negative numbers, 0–1, 1–10, 10–1e10, 1e10–101e10, 101e10410, 410–510, etc. (see tetration)

The "midpoints" which determine which round number is nearer are in the first case:

1.076, 2.071, 1453, 4.20e31, 1.69e316,...

and, depending on the interpolation method, in the second case

−.301, .5, 3.162, 1453, 1e1453, (10)1101453, (10)2101453,... (see notation of extremely large numbers)

For extremely small numbers (in the sense of close to zero) neither method is suitable directly, but of course the generalized order of magnitude of the reciprocal can be considered.

Similar to the logarithmic scale one can have a double logarithmic scale (example provided here) and super-logarithmic scale. The intervals above all have the same length on them, with the "midpoints" actually midway. More generally, a point midway between two points corresponds to the generalised f-mean with f(x) the corresponding function log log x or slog x. In the case of log log x, this mean of two numbers (e.g. 2 and 16 giving 4) does not depend on the base of the logarithm, just like in the case of log x (geometric mean, 2 and 8 giving 4), but unlike in the case of log log log x (4 and 65536 giving 16 if the base is 2, but, otherwise).

See also

References

Further reading

External links

Template:Orders of magnitude wide