File:Curve -0.10 -0.80 -0.30 -0.60.png

From formulasearchengine
Jump to navigation Jump to search

Curve_-0.10_-0.80_-0.30_-0.60.png(640 × 480 pixels, file size: 14 KB, MIME type: image/png)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Template:One source Fluorescence anisotropy is the phenomenon where the light emitted by a fluorophore has unequal intensities along different axes of polarization. Early pioneers in the field include Aleksander Jablonski, Gregorio Weber,[1] and Andreas Albrecht.[2] The principles of fluorescence polarization and some applications of the method are presented in Lakowicz's book.[3]

Principle

In fluorescence, a molecule absorbs a photon and gets excited to a higher energy state. After a short delay (the average represented as the fluorescence lifetime ), it comes down to a lower state by losing some of the energy as heat and emitting the rest of the energy as another photon. The excitation and de-excitation involve the redistribution of electrons about the molecule. Hence, excitation by a photon can occur only if the electric field of the light is oriented in a particular axis about the molecule. Also, the emitted photon will have a specific polarization with respect to the molecule.

When polarized light is applied to a group of randomly oriented fluorophores, most of the excited molecules will be those oriented within a particular range of angles to the applied polarization. If they do not move, the emitted light will also be polarized within a particular range angles to the applied light. This intrinsic anisotropy (denoted r0) is usually measured by embedding the fluorophore in a frozen polyol.

When the fluorophores can freely change their orientation before re-emitting the photons, the degree of polarization of the emitted light will be reduced. The degree of decorrelation in the polarization of the incident and emitted light depends on how quickly the fluorophore orientation gets scrambled ( the rotational lifetime ) compared to the fluorescence lifetime (). The scrambling of orientations can occur by the whole molecule tumbling or by the rotation of only the fluorescent part. The rate of tumbling is related to the measure anisotropy by the relationship:

Where r is the observed anisotropy, r0 is the intrinsic anisotropy of the molecule, is the fluorescence lifetime and is the rotational time constant.[4]

This analysis is valid only if the fluorophores are relatively far apart. If they are very close to another, they can exchange energy by FRET and because the emission can occur from one of many independently moving (or oriented) molecules this results in a lower than expected anisotropy or a greater decorrelation. This type of homotransfer Förster resonance energy transfer is called energy migration FRET or emFRET

Applications

Fluorescence anisotropy can be used to measure the binding constants and kinetics of reactions that cause a change in the rotational time of the molecules. If the fluorophore is bound to a small molecule, the rate at which it tumbles can decrease significantly when it is bound tightly to a large protein. If the fluorophore is attached to the larger protein in a binding pair, the difference in polarization between bound and unbound states will be smaller (because the unbound protein will already be fairly stable and tumble slowly to begin with) and the measurement will be less accurate. The degree of binding is calculated by using the difference in anisotropy of the partially bound, free and fully bound (large excess of protein) states measured by titrating the two binding partners.

If the fluorophore is bound to a relatively large molecule like a protein or an RNA, the change in the mobility accompanying folding can be used to study the dynamics of folding. This provides a measure of the dynamics of how the protein achieves its final, stable 3D shape.

Fluorescence anisotropy is also applied to microscopy, with use of polarizers in the path of the illuminating light and also before the camera. This can be used to study the local viscosity of the cytosol or membranes, with the latter giving information about the membrane microstructure and the relative concentrations of various lipids. This technique has also been used to detect the binding of molecules to their partners in signaling cascades in response to certain cues.

The phenomenon of emFRET and the associated decrease in anisotropy when close interactions occur between fluorophores has been used to study the aggregation of proteins in response to signaling.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Template:Protein structure determination

  1. Weber, G., 1953. Rotational Brownian motion and polarization of the fluorescence of solutions. Adv. Protein Chem. 8:415-459
  2. Albrecht, A., 1961. Polarizations and assignments of transitions: the method of photoselection. J. Mol. Spectrosc. 6:84-108.
  3. Lakowicz, J.R., 2006. Principles of Fluorescence Spectroscopy (3rd ed., Springer. Chapter 10-12 deal with fluorescence polarization spectroscopy.)
  4. Valeur, Bernard. 2001. Molecular Fluorescence: Principles and Applications Wiley-VCH, p.29

Summary

A generic w:de Rham curve for .

Licensing

Created by Linas Vepstas <linas@linas.org> or w:User:Linas on 24 August 2006.

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. Subject to disclaimers.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
This licensing tag was added to this file as part of the GFDL licensing update.
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. Subject to disclaimers.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:37, 24 August 2006Thumbnail for version as of 16:37, 24 August 2006640 × 480 (14 KB)wikimediacommons>Linas== Summary == A generic de Rham curve for <math>\alpha=0.5, \beta=1.0, \delta=-0.1, \epsilon=-0.6, \zeta=-0.3, \eta=-0.6</math>. == Licensing == Created by Linas Vepstas <linas@linas.org> or User:Linas on 24 August 2006. {{gfdl-self}}

There are no pages that use this file.