File:Ackermann.png

From formulasearchengine
Jump to navigation Jump to search

Ackermann.png(512 × 75 pixels, file size: 6 KB, MIME type: image/png)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Pontryagin's maximum (or minimum) principle is used in optimal control theory to find the best possible control for taking a dynamical system from one state to another, especially in the presence of constraints for the state or input controls. It was formulated in 1956 by the Russian mathematician Lev Semenovich Pontryagin and his students.[1] [2] It has as a special case the Euler–Lagrange equation of the calculus of variations.

The principle states informally that the Hamiltonian must be minimized over , the set of all permissible controls. If is the optimal control for the problem, then the principle states that:

where is the optimal state trajectory and is the optimal costate trajectory.

The result was first successfully applied into minimum time problems where the input control is constrained, but it can also be useful in studying state-constrained problems.

Special conditions for the Hamiltonian can also be derived. When the final time is fixed and the Hamiltonian does not depend explicitly on time , then:

and if the final time is free, then:

More general conditions on the optimal control are given below.

When satisfied along a trajectory, Pontryagin's minimum principle is a necessary condition for an optimum. The Hamilton–Jacobi–Bellman equation provides a necessary and sufficient condition for an optimum, but this condition must be satisfied over the whole of the state space.

Maximization and minimization

The principle was first known as Pontryagin's maximum principle and its proof is historically based on maximizing the Hamiltonian. The initial application of this principle was to the maximization of the terminal speed of a rocket. However as it was subsequently mostly used for minimization of a performance index it has here been referred to as the minimum principle. Pontryagin's book solved the problem of minimizing a performance index.[3]

Notation

In what follows we will be making use of the following notation.

Formal statement of necessary conditions for minimization problem

Here the necessary conditions are shown for minimization of a functional. Take to be the state of the dynamical system with input , such that

where is the set of admissible controls and is the terminal (i.e., final) time of the system. The control must be chosen for all to minimize the objective functional which is defined by the application and can be abstracted as

The constraints on the system dynamics can be adjoined to the Lagrangian by introducing time-varying Lagrange multiplier vector , whose elements are called the costates of the system. This motivates the construction of the Hamiltonian defined for all by:

where is the transpose of .

Pontryagin's minimum principle states that the optimal state trajectory , optimal control , and corresponding Lagrange multiplier vector must minimize the Hamiltonian so that

for all time and for all permissible control inputs . It must also be the case that

Additionally, the costate equations

must be satisfied. If the final state is not fixed (i.e., its differential variation is not zero), it must also be that the terminal costates are such that

These four conditions in (1)-(4) are the necessary conditions for an optimal control. Note that (4) only applies when is free. If it is fixed, then this condition is not necessary for an optimum.

See also

Notes

  1. I. M. Ross A Primer on Pontryagin's Principle in Optimal Control, Collegiate Publishers, 2009.
  2. See ref. below for first published work.
  3. See p.13 of the 1962 book of Pontryagin et al. referenced below.

References

  • V.G. Boltyanskii, R.V. Gamkrelidze. L.S. Pontryagin: Towards a theory of optimal processes, (Russian), Reports Acad. Sci. USSR, vol.110(1), 1956
  • Pontryagin L.S, Boltyanskii V.G, Gamkrelidze R. V, Mishchenko E. F, The Mathematical Theory of Optimal Processes (Russian), English translation: Interscience 1962. ISBN 2-88124-077-1 and ISBN 978-2-88124-077-5
  • Fuller A.T. Bibliography of Pontryagin's maximum principle, J. Electronics & Control vol.15 no.5 Nov. 1963 pp. 513–517
  • Kirk, D.E. Optimal Control Theory, An Introduction, Prentice Hall, 1970. ISBN 0-486-43484-2
  • Sethi, S. P. and Thompson, G. L. Optimal Control Theory: Applications to Management Science and Economics, 2nd edition, Springer, 2000. ISBN 0-387-28092-8 and ISBN 0-7923-8608-6. Slides are available at http://www.utdallas.edu/~sethi/OPRE7320presentation.html
  • Geering, H.P. Optimal Control with Engineering Applications, Springer, 2007. ISBN 978-3-540-69437-3
  • Ross, I. M. A Primer on Pontryagin's Principle in Optimal Control, Collegiate Publishers, 2009. ISBN 978-0-9843571-0-9.
  • Cassel, Kevin W.: Variational Methods with Applications in Science and Engineering, Cambridge University Press, 2013.

External links

  • Other Sports Official Kull from Drumheller, has hobbies such as telescopes, property developers in singapore and crocheting. Identified some interesting places having spent 4 months at Saloum Delta.

    my web-site http://himerka.com/

fr:Commande optimale#Principe du maximum ru:Оптимальное_управление#Принцип_максимума_Понтрягина

Summary

Description
English: Image for main page with Ackermann function.
Date 16 July 2004 (original upload date)
Source

Rendering of relevant math notation. Rendered obsolete by the following math code:

<math> A(m, n) = \begin{cases} n+1 & \mbox{if } m = 0 \\ A(m-1, 1) & \mbox{if } m > 0 \mbox{ and } n = 0 \\ A(m-1, A(m, n-1)) & \mbox{if } m > 0 \mbox{ and } n > 0. \end{cases} </math>
Author The original uploader was Lupin at Wikipedia.

Licensing

Public domain
The depicted text is ineligible for copyright and therefore in the public domain because it is not a “literary work” or other protected type in sense of the local copyright law. Facts, data, and unoriginal information which is common property without sufficiently creative authorship in a general typeface or basic handwriting, and simple geometric shapes are not protected by copyright. This tag does not generally apply to all images of texts. Particular countries can have different legal definition of the “literary work” as the subject of copyright and different courts' interpretation practices. Some countries protect almost every written work, while other countries protect distinctively artistic or scientific texts and databases only. Extent of creativeness, function and length of the text can be relevant. The copyright protection can be limited to the literary form – the included information itself can be excluded from protection.

Captions

Image for main page with Ackermann function

Items portrayed in this file

depicts

16 July 2004

image/png

f71ae4075be641235c4cb038ef0b8ed1702b3fa0

5,922 byte

75 pixel

512 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:46, 24 September 2004Thumbnail for version as of 19:46, 24 September 2004512 × 75 (6 KB)wikimediacommons>SverdrupFix omission

There are no pages that use this file.