Treaties of Velasco: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ClueBot NG
m Reverting possible vandalism by 99.189.226.90 to version by 72.53.182.23. False positive? Report it. Thanks, ClueBot NG. (1647000) (Bot)
 
en>ClueBot NG
m Reverting possible vandalism by 99.153.189.218 to version by 23.252.87.180. False positive? Report it. Thanks, ClueBot NG. (1729120) (Bot)
Line 1: Line 1:
{{Lie groups}}
I am Christa from Kropfing studying Political Science. I did my schooling, secured 89% and hope to find someone with same interests in Model Aircraft Hobbies.<br><br>Here is my weblog: Www.Hostgator1Centcoupon.info, [http://iaco.ajou.ac.kr/?document_srl=514632 iaco.ajou.ac.kr],
 
This article gives a table of some common [[Lie group]]s and their associated [[Lie algebra]]s.
 
The following are noted: the [[Topology|topological]] properties of the group ([[dimension]]; [[Connected space|connectedness]]; [[Compact space|compactness]]; the nature of the [[fundamental group]]; and whether or not they are [[simply connected]]) as well as on their algebraic properties ([[Abelian group|abelian]]; [[Simple group|simple]]; [[Semisimple group|semisimple]]).
 
For more examples of Lie groups and other related topics see the [[list of simple Lie groups]]; the [[Bianchi classification]] of groups of up to three dimensions; and the [[list of Lie group topics]].
 
== Real Lie groups and their algebras ==
 
Column legend
* '''CM''': Is this group ''G'' [[Compact space|compact]]? (Yes or No)
* '''<math>\pi_0</math>''': Gives the [[group of components]] of ''G''. The order of the component group gives the number of [[connected space|connected components]]. The group is [[connected space|connected]] if and only if the component group is [[trivial group|trivial]] (denoted by 0).
* '''<math>\pi_1</math>''': Gives the [[fundamental group]] of ''G'' whenever ''G'' is connected. The group is [[simply connected]] if and only if the fundamental group is [[trivial group|trivial]] (denoted by 0).
* '''UC''': If ''G'' is not simply connected, gives the [[universal cover]] of ''G''.
{{clr}}
{| border="1" cellpadding="2" cellspacing="0"
|- style="background-color:#eee"
! Lie group
! Description
! CM
! <math>\pi_0</math>
! <math>\pi_1</math>
! UC
! Remarks
! Lie algebra
! dim/'''R'''
|-
| align=center | '''R'''<sup>''n''</sup>
| [[Euclidean space]] with addition
| N
| 0
| 0
|
| abelian
| align=center | '''R'''<sup>''n''</sup>
| align=center | ''n''
|-
| align=center | '''R'''<sup>&times;</sup>
| nonzero [[real number]]s with multiplication
| N
| '''Z'''<sub>2</sub>
| &ndash;
|
| abelian
| align=center | '''R'''
| align=center | 1
|-
| align=center | '''R'''<sup>+</sup>
| positive real numbers with multiplication
| N
| 0
| 0
|
| abelian
| align=center | '''R'''
| align=center | 1
|-
| align=center | ''S''<sup>1</sup>&nbsp;=&nbsp;U(1)
| the [[circle group]]: [[complex number]]s of absolute value 1, with multiplication;
| Y
| 0
| '''Z'''
| '''R'''
| abelian,  isomorphic to SO(2), Spin(2), and '''R'''/'''Z'''
| align=center | '''R'''
| align=center | 1
|-
| align=center | [[Affine group|Aff(1)]]
| invertible [[affine transformation]]s from '''R''' to '''R'''.
| N
| '''Z'''<sub>2</sub>
| 0
|
| [[solvable group|solvable]], [[semidirect product]] of '''R'''<sup>+</sup> and '''R'''<sup>&times;</sup>
| align=center | <math>\left\{\left[\begin{smallmatrix}a & b \\ 0 & 0\end{smallmatrix}\right] : a,b \in \mathbb{R}\right\}</math>
| align=center | 2
|-
| align=center | '''H'''<sup>&times;</sup>
| non-zero [[quaternions]] with multiplication
| N
| 0
| 0
|
|
| align=center | '''H'''
| align=center | 4
|-
| align=center | ''S''<sup>3</sup>&nbsp;=&nbsp;Sp(1)
| [[quaternions]] of [[absolute value]] 1, with multiplication; topologically a [[3-sphere]]
| Y
| 0
| 0
|
| isomorphic to [[SU(2)]] and to [[Spin(3)]]; [[Double covering group|double cover]] of [[SO(3)]]
| align=center | Im('''H''')
| align=center | 3
|-
| align=center | GL(''n'','''R''')
| [[general linear group]]: [[invertible matrix|invertible]] ''n''&times;''n'' real [[matrix (mathematics)|matrices]]
| N
| '''Z'''<sub>2</sub>
| &ndash;
|
|
| align=center | M(''n'','''R''')
| align=center | ''n''<sup>2</sup>
|-
| align=center | GL<sup>+</sup>(''n'','''R''')
| ''n''&times;''n'' real matrices with positive [[determinant]]
| N
| 0
| '''Z'''&nbsp;&nbsp;''n''=2<br>'''Z'''<sub>2</sub>&nbsp;''n''&gt;2
|
| GL<sup>+</sup>(1,'''R''') is isomorphic to '''R'''<sup>+</sup> and is simply connected
| align=center | M(''n'','''R''')
| align=center | ''n''<sup>2</sup>
|-
| align=center | SL(''n'','''R''')
| [[special linear group]]: real matrices with [[determinant]] 1
| N
| 0
| '''Z'''&nbsp;&nbsp;''n''=2<br>'''Z'''<sub>2</sub>&nbsp;''n''&gt;2
|
| SL(1,'''R''') is a single point and therefore compact and simply connected
| align=center | sl(''n'','''R''')
| align=center | ''n''<sup>2</sup>&minus;1
|-
| align=center | [[SL2(R)|SL(2,'''R''')]]
| Orientation-preserving isometries of the [[Poincaré half-plane]], isomorphic to SU(1,1), isomorphic to Sp(2,'''R''').
| N
| 0
| '''Z'''
|
| The [[universal cover]] has no finite-dimensional faithful representations.
| align=center | sl(2,'''R''')
| align=center | 3
|-
| align=center | O(''n'')
| [[orthogonal group]]: real [[orthogonal matrix|orthogonal matrices]]
| Y
| '''Z'''<sub>2</sub>
| &ndash;
|
| The symmetry group of the [[sphere]] (n=3) or [[hypersphere]].
| align=center | so(''n'')
| align=center | ''n''(''n''&minus;1)/2
|-
| align=center | SO(''n'')
| [[special orthogonal group]]: real orthogonal matrices with determinant 1
| Y
| 0
| '''Z'''&nbsp;&nbsp;''n''=2<br>'''Z'''<sub>2</sub>&nbsp;''n''&gt;2
| Spin(''n'')<br>''n''&gt;2
| SO(1) is a single point and SO(2) is isomorphic to the [[circle group]], SO(3) is the rotation group of the sphere.
| align=center | so(''n'')
| align=center | ''n''(''n''&minus;1)/2
|-
| align=center | Spin(''n'')
| [[spin group]]: [[Double covering group|double cover]] of SO(''n'')
| Y
| 0&nbsp;''n''&gt;1
| 0&nbsp;''n''&gt;2
|
| Spin(1) is isomorphic to '''Z'''<sub>2</sub> and not connected; Spin(2) is isomorphic to the circle group and not simply connected
| align=center | so(''n'')
| align=center | ''n''(''n''&minus;1)/2
|-
| align=center | Sp(2''n'','''R''')
| [[symplectic group]]: real [[symplectic matrix|symplectic matrices]]
| N
| 0
| '''Z'''
|
|
| align=center | sp(2''n'','''R''')
| align=center | ''n''(2''n''+1)
|-
| align=center | Sp(''n'')
| [[compact symplectic group]]: quaternionic ''n''&times;''n'' [[unitary matrix|unitary matrices]]
| Y
| 0
| 0
|
|
| align=center | sp(''n'')
| align=center | ''n''(2''n''+1)
|-
| align=center | U(''n'')
| [[unitary group]]: [[complex number|complex]] ''n''&times;''n'' [[unitary matrix|unitary matrices]]
| Y
| 0
| '''Z'''
| '''R'''&times;SU(''n'')
| For ''n''=1: isomorphic to S<sup>1</sup>. Note: this is ''not'' a complex Lie group/algebra
| align=center | u(''n'')
| align=center | ''n''<sup>2</sup>
|-
| align=center | SU(''n'')
| [[special unitary group]]: [[complex number|complex]] ''n''&times;''n'' [[unitary matrix|unitary matrices]] with determinant 1
| Y
| 0
| 0
|
| Note: this is ''not'' a complex Lie group/algebra
| align=center | su(''n'')
| align=center | ''n''<sup>2</sup>&minus;1
|-
|}
 
==Real Lie algebras==
 
Table legend:
* '''S''': Is this algebra simple? (Yes or No)
* '''SS''': Is this algebra [[Semisimple Lie algebra|semi-simple]]? (Yes or No)
 
{| border="1" cellpadding="2" cellspacing="0"
|- style="background-color:#eee"
! Lie algebra
! Description
! S
! SS
! Remarks
! dim/'''R'''
|-
| align=center | '''R'''
| the [[real number]]s, the Lie bracket is zero
|
|
|
| align=center | 1
|-
| align=center | '''R'''<sup>''n''</sup>
| the Lie bracket is zero
|
|
|
| align=center | ''n''
|-
| align=center | '''R'''<sup>''3''</sup>
| the Lie bracket is the [[cross product]]
|
|
|
| align=center | ''3''
|-
| align=center | '''H'''
| [[quaternions]], with Lie bracket the commutator
|
|
|
| align=center | 4
|-
| align=center | Im('''H''')
| quaternions with zero real part, with Lie bracket the commutator; isomorphic to real 3-vectors,
with Lie bracket the [[cross product]]; also isomorphic to su(2) and to so(3,'''R''')
| Y
| Y
|
| align=center | 3
|-
| align=center | M(''n'','''R''')
| ''n''&times;''n'' matrices, with Lie bracket the commutator
|
|
|
| align=center | ''n''<sup>2</sup>
|-
| align=center | sl(''n'','''R''')
| square matrices with [[trace of a matrix|trace]] 0, with Lie bracket the commutator
| Y
| Y
|
| align=center | ''n''<sup>2</sup>&minus;1
|-
| align=center | so(''n'')
| [[skew-symmetric]] square real matrices, with Lie bracket the commutator.
| Y
| Y
| Exception: so(4) is semi-simple, but ''not'' simple.
| align=center | ''n''(''n''&minus;1)/2
|-
| align=center | sp(2''n'','''R''')
| real matrices that satisfy ''JA'' + ''A''<sup>''T''</sup>''J'' = 0 where ''J'' is the standard [[skew-symmetric matrix]]
| Y
| Y
|
| align=center | ''n''(2''n''+1)
|-
| align=center | sp(''n'')
| square quaternionic matrices ''A'' satisfying ''A'' = &minus;''A''<sup>*</sup>, with Lie bracket the commutator
| Y
| Y
|
| align=center | ''n''(2''n''+1)
|-
| align=center | u(''n'')
| square complex matrices ''A'' satisfying ''A'' = &minus;''A''<sup>*</sup>, with Lie bracket the commutator
|
|
|
| align=center | ''n''<sup>2</sup>
|-
| align=center | su(''n'') <br>''n''≥2
| square complex matrices ''A'' with trace 0 satisfying ''A'' = &minus;''A''<sup>*</sup>, with Lie bracket the commutator
| Y
| Y
|
| align=center | ''n''<sup>2</sup>&minus;1
|-
|}
 
== [[Complex Lie group]]s and their algebras ==
 
The dimensions given are dimensions over '''C'''. Note that every complex Lie group/algebra can also be viewed as a real Lie group/algebra of twice the dimension.
 
{| border="1" cellpadding="2" cellspacing="0"
|- style="background-color:#eee"
! Lie group
! Description
! CM
! <math>\pi_0</math>
! <math>\pi_1</math>
! UC
! Remarks
! Lie algebra
! dim/'''C'''
|-
| align="center" | '''C'''<sup>''n''</sup>
| group operation is addition
| N
| 0
| 0
|
| abelian
| align="center" | '''C'''<sup>''n''</sup>
| align="center" | ''n''
|-
| align="center" | '''C'''<sup>&times;</sup>
| nonzero [[complex number]]s with multiplication
| N
| 0
| '''Z'''
|
| abelian
| align="center" | '''C'''
| align="center" | 1
|-
| align="center" | GL(''n'','''C''')
| [[general linear group]]: [[invertible matrix|invertible]] ''n''&times;''n'' complex [[Matrix (mathematics)|matrices]]
| N
| 0
| '''Z'''
|
| For ''n''=1: isomorphic to '''C'''<sup>&times;</sup>
| align="center" | M(''n'','''C''')
| align="center" | ''n''<sup>2</sup>
|-
| align="center" | SL(''n'','''C''')
| [[special linear group]]: complex matrices with [[determinant]]
1
| N
| 0
| 0
|
| for n=1 this is a single point and thus compact.
| align="center" | sl(''n'','''C''')
| align="center" | ''n''<sup>2</sup>&minus;1
|-
| align="center" | SL(2,'''C''')
| Special case of SL(''n'','''C''') for ''n''=2
| N
| 0
| 0
|
| Isomorphic to Spin(3,'''C'''), isomorphic to Sp(2,'''C''')
| align="center" | sl(2,'''C''')
| align="center" | 3
|-
| align="center" | PSL(2,'''C''')
| Projective special linear group
| N
| 0
| '''Z'''<sub>2</sub>
| SL(2,'''C''')
| Isomorphic to the [[Möbius group]], isomorphic to the restricted [[Lorentz group]] SO<sup>+</sup>(3,1,'''R'''), isomorphic to SO(3,'''C''').  
| align="center" | sl(2,'''C''')
| align="center" | 3
|-
| align="center" | O(''n'','''C''')
| [[orthogonal group]]: complex [[orthogonal matrix|orthogonal matrices]]
| N
| '''Z'''<sub>2</sub>
| &ndash;
|
| compact for n=1
| align="center" | so(''n'','''C''')
| align="center" | ''n''(''n''&minus;1)/2
|-
| align="center" | SO(''n'','''C''')
| [[special orthogonal group]]: complex orthogonal matrices with determinant 1
| N
| 0
| '''Z'''&nbsp;&nbsp;''n''=2<br>'''Z'''<sub>2</sub>&nbsp;''n''&gt;2
|
| SO(2,'''C''') is abelian and isomorphic to '''C'''<sup>&times;</sup>; nonabelian for ''n''&gt;2. SO(1,'''C''') is a single point and thus compact and simply connected
| align="center" | so(''n'','''C''')
| align="center" | ''n''(''n''&minus;1)/2
|-
| align="center" | Sp(2''n'','''C''')
| [[symplectic group]]: complex [[symplectic matrix|symplectic matrices]]
| N
| 0
| 0
|
|
| align="center" | sp(2''n'','''C''')
| align="center" | ''n''(2''n''+1)
|-
|}
 
== Complex Lie algebras ==
 
The dimensions given are dimensions over '''C'''. Note that every complex Lie algebra can also be viewed as a real Lie algebra of twice the dimension.
 
{| border="1" cellpadding="2" cellspacing="0"
|- style="background-color:#eee"
! Lie algebra
! Description
! S
! SS
! Remarks
! dim/'''C'''
|-
| align="center" | '''C'''
| the [[complex number]]s
|
|
|
| align="center" | 1
|-
| align="center" | '''C'''<sup>''n''</sup>
| the Lie bracket is zero
|
|
|
| align="center" | ''n''
|-
| align="center" | M(''n'','''C''')
| ''n''&times;''n'' matrices, with Lie bracket the commutator
|
|
|
| align="center" | ''n''<sup>2</sup>
|-
| align="center" | sl(''n'','''C''')
| square matrices with [[trace of a matrix|trace]] 0, with Lie bracket
the commutator
| Y
| Y
|
| align="center" | ''n''<sup>2</sup>&minus;1
|-
| align="center" | sl(2,'''C''')
| Special case of sl(''n'','''C''') with ''n''=2
| Y
| Y
| isomorphic to su(2) <math>\otimes</math> '''C'''
| align="center" | 3
|-
| align="center" | so(''n'','''C''')
| [[skew-symmetric]] square complex matrices, with Lie bracket
the commutator
| Y
| Y
| Exception: so(4,'''C''') is semi-simple, but not simple.
| align="center" | ''n''(''n''&minus;1)/2
|-
| align="center" | sp(2''n'','''C''')
| complex matrices that satisfy ''JA'' + ''A''<sup>''T''</sup>''J'' = 0
where ''J'' is the standard [[skew-symmetric matrix]]
| Y
| Y
|
| align="center" | ''n''(2''n''+1)
|-
|}
 
==References==
* {{Fulton-Harris}}
 
[[Category:Lie groups]]
[[Category:Lie algebras]]
[[Category:Mathematics-related lists|Lie groups]]

Revision as of 05:27, 5 March 2014

I am Christa from Kropfing studying Political Science. I did my schooling, secured 89% and hope to find someone with same interests in Model Aircraft Hobbies.

Here is my weblog: Www.Hostgator1Centcoupon.info, iaco.ajou.ac.kr,