Jump to navigation Jump to search

General

Display information for equation id:math.25142.27 on revision:25142

* Page found: Fundamental theorem of linear programming (eq math.25142.27)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: 1ba8aaab47179b3d3e24b0ccea9f4e30

TeX (original user input):

x_i

TeX (checked):

x_{i}

LaTeXML (experimental; uses MathML) rendering

MathML (843 B / 337 B) :

x i subscript 𝑥 𝑖 {\displaystyle x_{i}}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle x_{i}}" display="inline">
  <semantics id="p1.1.m1.1a">
    <msub id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">
      <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">x</mi>
      <mi id="p1.1.m1.1.2.1" xref="p1.1.m1.1.2.1.cmml">i</mi>
    </msub>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">
        <csymbol cd="ambiguous" id="p1.1.m1.1.3.1.cmml" xref="p1.1.m1.1.3">subscript</csymbol>
        <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝑥</ci>
        <ci id="p1.1.m1.1.2.1.cmml" xref="p1.1.m1.1.2.1">𝑖</ci>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle x_{i}}</annotation>
  </semantics>
</math>

SVG (2.027 KB / 1.041 KB) :

x Subscript i

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


PNG (0 B / 8 B) :


Translations to Computer Algebra Systems

Translation to Maple

In Maple: x[i]

Information about the conversion process:

I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Maple uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


i: the imaginary unit == the principal square root of -1 was translated to: i


Translation to Mathematica

In Mathematica: Subscript[x, i]

Information about the conversion process:

I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Mathematica uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


i: the imaginary unit == the principal square root of -1 was translated to: i


Similar pages

Calculated based on the variables occurring on the entire Fundamental theorem of linear programming page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results