Jump to navigation Jump to search

General

Display information for equation id:math.246520.4 on revision:246520

* Page found: Frobenius theorem (real division algebras) (eq math.246520.4)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: 6c2e770b0f9462ea89ea6d402c025102

TeX (original user input):

e_i^2 =-1, \quad e_i e_j = - e_j e_i.

TeX (checked):

e_{i}^{2}=-1,\quad e_{i}e_{j}=-e_{j}e_{i}.

LaTeXML (experimental; uses MathML) rendering

MathML (6.206 KB / 1.01 KB) :

e i 2 = - 1 , e i e j = - e j e i . formulae-sequence superscript subscript 𝑒 𝑖 2 1 subscript 𝑒 𝑖 subscript 𝑒 𝑗 subscript 𝑒 𝑗 subscript 𝑒 𝑖 {\displaystyle{\displaystyle e_{i}^{2}=-1,\quad e_{i}e_{j}=-e_{j}e_{i}.}}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle{\displaystyle e_{i}^{2}=-1,\quad e_{i}e_{j}=-e_{j}e_{i}.}}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.20">
      <mrow id="p1.1.m1.1.20.2" xref="p1.1.m1.1.20.2.1.cmml">
        <mrow id="p1.1.m1.1.20.2.2" xref="p1.1.m1.1.20.2.2.cmml">
          <msubsup id="p1.1.m1.1.20.2.2.1" xref="p1.1.m1.1.20.2.2.1.cmml">
            <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">e</mi>
            <mi id="p1.1.m1.1.2.1" xref="p1.1.m1.1.2.1.cmml">i</mi>
            <mn id="p1.1.m1.1.3.1" xref="p1.1.m1.1.3.1.cmml">2</mn>
          </msubsup>
          <mo id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">=</mo>
          <mrow id="p1.1.m1.1.20.2.2.2" xref="p1.1.m1.1.20.2.2.2.cmml">
            <mo id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">-</mo>
            <mn id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">1</mn>
          </mrow>
        </mrow>
        <mo rspace="12.5pt" id="p1.1.m1.1.7" xref="p1.1.m1.1.20.2.1a.cmml">,</mo>
        <mrow id="p1.1.m1.1.20.2.3" xref="p1.1.m1.1.20.2.3.cmml">
          <mrow id="p1.1.m1.1.20.2.3.1" xref="p1.1.m1.1.20.2.3.1.cmml">
            <msub id="p1.1.m1.1.20.2.3.1.2" xref="p1.1.m1.1.20.2.3.1.2.cmml">
              <mi id="p1.1.m1.1.9" xref="p1.1.m1.1.9.cmml">e</mi>
              <mi id="p1.1.m1.1.10.1" xref="p1.1.m1.1.10.1.cmml">i</mi>
            </msub>
            <mo id="p1.1.m1.1.20.2.3.1.1" xref="p1.1.m1.1.20.2.3.1.1.cmml"></mo>
            <msub id="p1.1.m1.1.20.2.3.1.3" xref="p1.1.m1.1.20.2.3.1.3.cmml">
              <mi id="p1.1.m1.1.11" xref="p1.1.m1.1.11.cmml">e</mi>
              <mi id="p1.1.m1.1.12.1" xref="p1.1.m1.1.12.1.cmml">j</mi>
            </msub>
          </mrow>
          <mo id="p1.1.m1.1.13" xref="p1.1.m1.1.13.cmml">=</mo>
          <mrow id="p1.1.m1.1.20.2.3.2" xref="p1.1.m1.1.20.2.3.2.cmml">
            <mo id="p1.1.m1.1.14" xref="p1.1.m1.1.14.cmml">-</mo>
            <mrow id="p1.1.m1.1.20.2.3.2.1" xref="p1.1.m1.1.20.2.3.2.1.cmml">
              <msub id="p1.1.m1.1.20.2.3.2.1.2" xref="p1.1.m1.1.20.2.3.2.1.2.cmml">
                <mi id="p1.1.m1.1.15" xref="p1.1.m1.1.15.cmml">e</mi>
                <mi id="p1.1.m1.1.16.1" xref="p1.1.m1.1.16.1.cmml">j</mi>
              </msub>
              <mo id="p1.1.m1.1.20.2.3.2.1.1" xref="p1.1.m1.1.20.2.3.2.1.1.cmml"></mo>
              <msub id="p1.1.m1.1.20.2.3.2.1.3" xref="p1.1.m1.1.20.2.3.2.1.3.cmml">
                <mi id="p1.1.m1.1.17" xref="p1.1.m1.1.17.cmml">e</mi>
                <mi id="p1.1.m1.1.18.1" xref="p1.1.m1.1.18.1.cmml">i</mi>
              </msub>
            </mrow>
          </mrow>
        </mrow>
      </mrow>
      <mo id="p1.1.m1.1.19">.</mo>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.20.2.1.cmml" xref="p1.1.m1.1.20.2">
        <csymbol cd="ambiguous" id="p1.1.m1.1.20.2.1a.cmml" xref="p1.1.m1.1.7">formulae-sequence</csymbol>
        <apply id="p1.1.m1.1.20.2.2.cmml" xref="p1.1.m1.1.20.2.2">
          <eq id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4"/>
          <apply id="p1.1.m1.1.20.2.2.1.cmml" xref="p1.1.m1.1.20.2.2.1">
            <csymbol cd="ambiguous" id="p1.1.m1.1.20.2.2.1.1.cmml" xref="p1.1.m1.1.20.2.2.1">superscript</csymbol>
            <apply id="p1.1.m1.1.20.2.2.1.2.cmml" xref="p1.1.m1.1.20.2.2.1">
              <csymbol cd="ambiguous" id="p1.1.m1.1.20.2.2.1.2.1.cmml" xref="p1.1.m1.1.20.2.2.1">subscript</csymbol>
              <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝑒</ci>
              <ci id="p1.1.m1.1.2.1.cmml" xref="p1.1.m1.1.2.1">𝑖</ci>
            </apply>
            <cn type="integer" id="p1.1.m1.1.3.1.cmml" xref="p1.1.m1.1.3.1">2</cn>
          </apply>
          <apply id="p1.1.m1.1.20.2.2.2.cmml" xref="p1.1.m1.1.20.2.2.2">
            <minus id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5"/>
            <cn type="integer" id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6">1</cn>
          </apply>
        </apply>
        <apply id="p1.1.m1.1.20.2.3.cmml" xref="p1.1.m1.1.20.2.3">
          <eq id="p1.1.m1.1.13.cmml" xref="p1.1.m1.1.13"/>
          <apply id="p1.1.m1.1.20.2.3.1.cmml" xref="p1.1.m1.1.20.2.3.1">
            <times id="p1.1.m1.1.20.2.3.1.1.cmml" xref="p1.1.m1.1.20.2.3.1.1"/>
            <apply id="p1.1.m1.1.20.2.3.1.2.cmml" xref="p1.1.m1.1.20.2.3.1.2">
              <csymbol cd="ambiguous" id="p1.1.m1.1.20.2.3.1.2.1.cmml" xref="p1.1.m1.1.20.2.3.1.2">subscript</csymbol>
              <ci id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9">𝑒</ci>
              <ci id="p1.1.m1.1.10.1.cmml" xref="p1.1.m1.1.10.1">𝑖</ci>
            </apply>
            <apply id="p1.1.m1.1.20.2.3.1.3.cmml" xref="p1.1.m1.1.20.2.3.1.3">
              <csymbol cd="ambiguous" id="p1.1.m1.1.20.2.3.1.3.1.cmml" xref="p1.1.m1.1.20.2.3.1.3">subscript</csymbol>
              <ci id="p1.1.m1.1.11.cmml" xref="p1.1.m1.1.11">𝑒</ci>
              <ci id="p1.1.m1.1.12.1.cmml" xref="p1.1.m1.1.12.1">𝑗</ci>
            </apply>
          </apply>
          <apply id="p1.1.m1.1.20.2.3.2.cmml" xref="p1.1.m1.1.20.2.3.2">
            <minus id="p1.1.m1.1.14.cmml" xref="p1.1.m1.1.14"/>
            <apply id="p1.1.m1.1.20.2.3.2.1.cmml" xref="p1.1.m1.1.20.2.3.2.1">
              <times id="p1.1.m1.1.20.2.3.2.1.1.cmml" xref="p1.1.m1.1.20.2.3.2.1.1"/>
              <apply id="p1.1.m1.1.20.2.3.2.1.2.cmml" xref="p1.1.m1.1.20.2.3.2.1.2">
                <csymbol cd="ambiguous" id="p1.1.m1.1.20.2.3.2.1.2.1.cmml" xref="p1.1.m1.1.20.2.3.2.1.2">subscript</csymbol>
                <ci id="p1.1.m1.1.15.cmml" xref="p1.1.m1.1.15">𝑒</ci>
                <ci id="p1.1.m1.1.16.1.cmml" xref="p1.1.m1.1.16.1">𝑗</ci>
              </apply>
              <apply id="p1.1.m1.1.20.2.3.2.1.3.cmml" xref="p1.1.m1.1.20.2.3.2.1.3">
                <csymbol cd="ambiguous" id="p1.1.m1.1.20.2.3.2.1.3.1.cmml" xref="p1.1.m1.1.20.2.3.2.1.3">subscript</csymbol>
                <ci id="p1.1.m1.1.17.cmml" xref="p1.1.m1.1.17">𝑒</ci>
                <ci id="p1.1.m1.1.18.1.cmml" xref="p1.1.m1.1.18.1">𝑖</ci>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle{\displaystyle e_{i}^{2}=-1,\quad e_{i}e_{j}=-e_{j}e_{i}.}}</annotation>
  </semantics>
</math>

SVG image empty. Force Re-Rendering

SVG (6.896 KB / 2.251 KB) :

e Subscript i Superscript 2 Baseline equals negative 1 comma e Subscript i Baseline times e Subscript j Baseline equals minus e Subscript j Baseline times e Subscript i Baseline period

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


PNG (0 B / 8 B) :


Translations to Computer Algebra Systems

Translation to Maple

In Maple: (e[i])^(2)= - 1 , e[i]*e[j]= - e[j]*e[i]

Information about the conversion process:

I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Maple uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


e: the mathematical constant e == Napier's constant == 2.71828182845... was translated to: e

exp(1): You use a typical letter for a constant [the mathematical constant e == Napier's constant == 2.71828182845...].

We keep it like it is! But you should know that Maple uses exp(1) for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \expe


i: the imaginary unit == the principal square root of -1 was translated to: i


Translation to Mathematica

In Mathematica: (Subscript[e, i])^(2)= - 1 , Subscript[e, i]*Subscript[e, j]= - Subscript[e, j]*Subscript[e, i]

Information about the conversion process:

E: You use a typical letter for a constant [the mathematical constant e == Napier's constant == 2.71828182845...].

We keep it like it is! But you should know that Mathematica uses E for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \expe


I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Mathematica uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


e: the mathematical constant e == Napier's constant == 2.71828182845... was translated to: e

i: the imaginary unit == the principal square root of -1 was translated to: i


Similar pages

Calculated based on the variables occurring on the entire Frobenius theorem (real division algebras) page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results