General

Display information for equation id:math.223294.13 on revision:223294

* Page found: Box–Muller transform (eq math.223294.13)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: 5b5667045cc0c21cd309530560aab1ef

TeX (original user input):

z_0 = \sqrt{-2 \ln U_1} \cos(2 \pi U_2) = \sqrt{-2 \ln s} \left(\frac{u}{\sqrt{s}}\right) = u \cdot \sqrt{\frac{-2 \ln s}{s}}

TeX (checked):

z_{0}={\sqrt {-2\ln U_{1}}}\cos(2\pi U_{2})={\sqrt {-2\ln s}}\left({\frac {u}{\sqrt {s}}}\right)=u\cdot {\sqrt {\frac {-2\ln s}{s}}}

LaTeXML (experimental; uses MathML) rendering

MathML (12.089 KB / 1.793 KB) :

${\displaystyle z_{0}={\sqrt{-2\ln U_{1}}}\cos(2\pi U_{2})={\sqrt{-2\ln s}}% \left({\frac{u}{{\sqrt{s}}}}\right)=u\cdot{\sqrt{{\frac{-2\ln s}{s}}}}}$
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle z_{0}={\sqrt{-2\ln U_{1}}}\cos(2\pi U_{2})={\sqrt{-2\ln s}}%&#10;\left({\frac{u}{{\sqrt{s}}}}\right)=u\cdot{\sqrt{{\frac{-2\ln s}{s}}}}}" display="inline">
<semantics id="p1.1.m1.1a">
<mrow id="p1.1.m1.1.21" xref="p1.1.m1.1.21.cmml">
<msub id="p1.1.m1.1.21.2" xref="p1.1.m1.1.21.2.cmml">
<mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">z</mi>
<mn id="p1.1.m1.1.2.1" xref="p1.1.m1.1.2.1.cmml">0</mn>
</msub>
<mo id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">=</mo>
<mrow id="p1.1.m1.1.21.3" xref="p1.1.m1.1.21.3.cmml">
<msqrt id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">
<mrow id="p1.1.m1.1.4.2" xref="p1.1.m1.1.4.2.cmml">
<mo id="p1.1.m1.1.4.2.1" xref="p1.1.m1.1.4.2.1.cmml">-</mo>
<mrow id="p1.1.m1.1.4.2.6" xref="p1.1.m1.1.4.2.6.cmml">
<mn id="p1.1.m1.1.4.2.2" xref="p1.1.m1.1.4.2.2.cmml">2</mn>
<mo id="p1.1.m1.1.4.2.6.1" xref="p1.1.m1.1.4.2.6.1.cmml"></mo>
<mrow id="p1.1.m1.1.4.2.6.2" xref="p1.1.m1.1.4.2.6.2.cmml">
<mi id="p1.1.m1.1.4.2.3" xref="p1.1.m1.1.4.2.3.cmml">ln</mi>
<mo id="p1.1.m1.1.4.2.6.2a" xref="p1.1.m1.1.4.2.6.2.cmml"></mo>
<msub id="p1.1.m1.1.4.2.6.2.1" xref="p1.1.m1.1.4.2.6.2.1.cmml">
<mi id="p1.1.m1.1.4.2.4" xref="p1.1.m1.1.4.2.4.cmml">U</mi>
<mn id="p1.1.m1.1.4.2.5.1" xref="p1.1.m1.1.4.2.5.1.cmml">1</mn>
</msub>
</mrow>
</mrow>
</mrow>
</msqrt>
<mo id="p1.1.m1.1.21.3.1" xref="p1.1.m1.1.21.3.1.cmml"></mo>
<mrow id="p1.1.m1.1.21.3.2.2" xref="p1.1.m1.1.21.3.2.1.cmml">
<mi id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">cos</mi>
<mo id="p1.1.m1.1.21.3.2.2a" xref="p1.1.m1.1.21.3.2.1.cmml"></mo>
<mrow id="p1.1.m1.1.21.3.2" xref="p1.1.m1.1.21.3.2.1.cmml">
<mo stretchy="false" id="p1.1.m1.1.6" xref="p1.1.m1.1.21.3.2.1.cmml">(</mo>
<mrow id="p1.1.m1.1.21.3.2.2.1" xref="p1.1.m1.1.21.3.2.1.cmml">
<mn id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">2</mn>
<mo id="p1.1.m1.1.21.3.2.2.1.1" xref="p1.1.m1.1.21.3.2.2.1.1.cmml"></mo>
<mi id="p1.1.m1.1.8" xref="p1.1.m1.1.8.cmml">π</mi>
<mo id="p1.1.m1.1.21.3.2.2.1.1a" xref="p1.1.m1.1.21.3.2.2.1.1.cmml"></mo>
<msub id="p1.1.m1.1.21.3.2.2.1.2" xref="p1.1.m1.1.21.3.2.1.cmml">
<mi id="p1.1.m1.1.9" xref="p1.1.m1.1.9.cmml">U</mi>
<mn id="p1.1.m1.1.10.1" xref="p1.1.m1.1.10.1.cmml">2</mn>
</msub>
</mrow>
<mo stretchy="false" id="p1.1.m1.1.11" xref="p1.1.m1.1.21.3.2.1.cmml">)</mo>
</mrow>
</mrow>
</mrow>
<mo id="p1.1.m1.1.12" xref="p1.1.m1.1.12.cmml">=</mo>
<mrow id="p1.1.m1.1.21.4" xref="p1.1.m1.1.21.4.cmml">
<msqrt id="p1.1.m1.1.13" xref="p1.1.m1.1.13.cmml">
<mrow id="p1.1.m1.1.13.2" xref="p1.1.m1.1.13.2.cmml">
<mo id="p1.1.m1.1.13.2.1" xref="p1.1.m1.1.13.2.1.cmml">-</mo>
<mrow id="p1.1.m1.1.13.2.5" xref="p1.1.m1.1.13.2.5.cmml">
<mn id="p1.1.m1.1.13.2.2" xref="p1.1.m1.1.13.2.2.cmml">2</mn>
<mo id="p1.1.m1.1.13.2.5.1" xref="p1.1.m1.1.13.2.5.1.cmml"></mo>
<mrow id="p1.1.m1.1.13.2.5.2" xref="p1.1.m1.1.13.2.5.2.cmml">
<mi id="p1.1.m1.1.13.2.3" xref="p1.1.m1.1.13.2.3.cmml">ln</mi>
<mo id="p1.1.m1.1.13.2.5.2a" xref="p1.1.m1.1.13.2.5.2.cmml"></mo>
<mi id="p1.1.m1.1.13.2.4" xref="p1.1.m1.1.13.2.4.cmml">s</mi>
</mrow>
</mrow>
</mrow>
</msqrt>
<mo id="p1.1.m1.1.21.4.1" xref="p1.1.m1.1.21.4.1.cmml"></mo>
<mrow id="p1.1.m1.1.21.4.2" xref="p1.1.m1.1.15.cmml">
<mo id="p1.1.m1.1.14">(</mo>
<mstyle displaystyle="true" id="p1.1.m1.1.15" xref="p1.1.m1.1.15.cmml">
<mfrac id="p1.1.m1.1.15a" xref="p1.1.m1.1.15.cmml">
<mi id="p1.1.m1.1.15.2" xref="p1.1.m1.1.15.2.cmml">u</mi>
<msqrt id="p1.1.m1.1.15.3" xref="p1.1.m1.1.15.cmml">
<mi id="p1.1.m1.1.15.3.1.2" xref="p1.1.m1.1.15.3.1.2.cmml">s</mi>
</msqrt>
</mfrac>
</mstyle>
<mo id="p1.1.m1.1.16">)</mo>
</mrow>
</mrow>
<mo id="p1.1.m1.1.17" xref="p1.1.m1.1.17.cmml">=</mo>
<mrow id="p1.1.m1.1.21.5" xref="p1.1.m1.1.21.5.cmml">
<mi id="p1.1.m1.1.18" xref="p1.1.m1.1.18.cmml">u</mi>
<mo id="p1.1.m1.1.19" xref="p1.1.m1.1.19.cmml"></mo>
<msqrt id="p1.1.m1.1.20" xref="p1.1.m1.1.20.cmml">
<mstyle displaystyle="true" id="p1.1.m1.1.20.2" xref="p1.1.m1.1.20.2.cmml">
<mfrac id="p1.1.m1.1.20.2a" xref="p1.1.m1.1.20.2.cmml">
<mrow id="p1.1.m1.1.20.2.1.2" xref="p1.1.m1.1.20.2.1.2.cmml">
<mo id="p1.1.m1.1.20.2.1.2.1" xref="p1.1.m1.1.20.2.1.2.1.cmml">-</mo>
<mrow id="p1.1.m1.1.20.2.1.2.5" xref="p1.1.m1.1.20.2.1.2.5.cmml">
<mn id="p1.1.m1.1.20.2.1.2.2" xref="p1.1.m1.1.20.2.1.2.2.cmml">2</mn>
<mo id="p1.1.m1.1.20.2.1.2.5.1" xref="p1.1.m1.1.20.2.1.2.5.1.cmml"></mo>
<mrow id="p1.1.m1.1.20.2.1.2.5.2" xref="p1.1.m1.1.20.2.1.2.5.2.cmml">
<mi id="p1.1.m1.1.20.2.1.2.3" xref="p1.1.m1.1.20.2.1.2.3.cmml">ln</mi>
<mo id="p1.1.m1.1.20.2.1.2.5.2a" xref="p1.1.m1.1.20.2.1.2.5.2.cmml"></mo>
<mi id="p1.1.m1.1.20.2.1.2.4" xref="p1.1.m1.1.20.2.1.2.4.cmml">s</mi>
</mrow>
</mrow>
</mrow>
<mi id="p1.1.m1.1.20.2.1.3" xref="p1.1.m1.1.20.2.1.3.cmml">s</mi>
</mfrac>
</mstyle>
</msqrt>
</mrow>
</mrow>
<annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
<apply id="p1.1.m1.1.21.cmml" xref="p1.1.m1.1.21">
<and id="p1.1.m1.1.21a.cmml" xref="p1.1.m1.1.21"/>
<apply id="p1.1.m1.1.21b.cmml" xref="p1.1.m1.1.21">
<eq id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3"/>
<apply id="p1.1.m1.1.21.2.cmml" xref="p1.1.m1.1.21.2">
<csymbol cd="ambiguous" id="p1.1.m1.1.21.2.1.cmml">subscript</csymbol>
<ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">z</ci>
<cn type="integer" id="p1.1.m1.1.2.1.cmml" xref="p1.1.m1.1.2.1">0</cn>
</apply>
<apply id="p1.1.m1.1.21.3.cmml" xref="p1.1.m1.1.21.3">
<times id="p1.1.m1.1.21.3.1.cmml" xref="p1.1.m1.1.21.3.1"/>
<apply id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4">
<root id="p1.1.m1.1.4a.cmml" xref="p1.1.m1.1.4"/>
<apply id="p1.1.m1.1.4.2.cmml" xref="p1.1.m1.1.4.2">
<minus id="p1.1.m1.1.4.2.1.cmml" xref="p1.1.m1.1.4.2.1"/>
<apply id="p1.1.m1.1.4.2.6.cmml" xref="p1.1.m1.1.4.2.6">
<times id="p1.1.m1.1.4.2.6.1.cmml" xref="p1.1.m1.1.4.2.6.1"/>
<cn type="integer" id="p1.1.m1.1.4.2.2.cmml" xref="p1.1.m1.1.4.2.2">2</cn>
<apply id="p1.1.m1.1.4.2.6.2.cmml" xref="p1.1.m1.1.4.2.6.2">
<ln id="p1.1.m1.1.4.2.3.cmml" xref="p1.1.m1.1.4.2.3"/>
<apply id="p1.1.m1.1.4.2.6.2.1.cmml" xref="p1.1.m1.1.4.2.6.2.1">
<csymbol cd="ambiguous" id="p1.1.m1.1.4.2.6.2.1.1.cmml">subscript</csymbol>
<ci id="p1.1.m1.1.4.2.4.cmml" xref="p1.1.m1.1.4.2.4">U</ci>
<cn type="integer" id="p1.1.m1.1.4.2.5.1.cmml" xref="p1.1.m1.1.4.2.5.1">1</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply id="p1.1.m1.1.21.3.2.1.cmml" xref="p1.1.m1.1.21.3.2.2">
<cos id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5"/>
<apply id="p1.1.m1.1.21.3.2.2.1.cmml" xref="p1.1.m1.1.21.3.2.2">
<times id="p1.1.m1.1.21.3.2.2.1.1.cmml" xref="p1.1.m1.1.21.3.2.2.1.1"/>
<cn type="integer" id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7">2</cn>
<ci id="p1.1.m1.1.8.cmml" xref="p1.1.m1.1.8">π</ci>
<apply id="p1.1.m1.1.21.3.2.2.1.2.cmml" xref="p1.1.m1.1.21.3.2.2">
<csymbol cd="ambiguous" id="p1.1.m1.1.21.3.2.2.1.2.1.cmml">subscript</csymbol>
<ci id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9">U</ci>
<cn type="integer" id="p1.1.m1.1.10.1.cmml" xref="p1.1.m1.1.10.1">2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply id="p1.1.m1.1.21c.cmml" xref="p1.1.m1.1.21">
<eq id="p1.1.m1.1.12.cmml" xref="p1.1.m1.1.12"/>
<share href="#p1.1.m1.1.21.3.cmml" id="p1.1.m1.1.21d.cmml" xref="p1.1.m1.1.21"/>
<apply id="p1.1.m1.1.21.4.cmml" xref="p1.1.m1.1.21.4">
<times id="p1.1.m1.1.21.4.1.cmml" xref="p1.1.m1.1.21.4.1"/>
<apply id="p1.1.m1.1.13.cmml" xref="p1.1.m1.1.13">
<root id="p1.1.m1.1.13a.cmml" xref="p1.1.m1.1.13"/>
<apply id="p1.1.m1.1.13.2.cmml" xref="p1.1.m1.1.13.2">
<minus id="p1.1.m1.1.13.2.1.cmml" xref="p1.1.m1.1.13.2.1"/>
<apply id="p1.1.m1.1.13.2.5.cmml" xref="p1.1.m1.1.13.2.5">
<times id="p1.1.m1.1.13.2.5.1.cmml" xref="p1.1.m1.1.13.2.5.1"/>
<cn type="integer" id="p1.1.m1.1.13.2.2.cmml" xref="p1.1.m1.1.13.2.2">2</cn>
<apply id="p1.1.m1.1.13.2.5.2.cmml" xref="p1.1.m1.1.13.2.5.2">
<ln id="p1.1.m1.1.13.2.3.cmml" xref="p1.1.m1.1.13.2.3"/>
<ci id="p1.1.m1.1.13.2.4.cmml" xref="p1.1.m1.1.13.2.4">s</ci>
</apply>
</apply>
</apply>
</apply>
<apply id="p1.1.m1.1.15.cmml" xref="p1.1.m1.1.21.4.2">
<divide id="p1.1.m1.1.15.1.cmml"/>
<ci id="p1.1.m1.1.15.2.cmml" xref="p1.1.m1.1.15.2">u</ci>
<apply id="p1.1.m1.1.15.3.cmml" xref="p1.1.m1.1.21.4.2">
<root id="p1.1.m1.1.15.3a.cmml"/>
<ci id="p1.1.m1.1.15.3.1.2.cmml" xref="p1.1.m1.1.15.3.1.2">s</ci>
</apply>
</apply>
</apply>
</apply>
<apply id="p1.1.m1.1.21e.cmml" xref="p1.1.m1.1.21">
<eq id="p1.1.m1.1.17.cmml" xref="p1.1.m1.1.17"/>
<share href="#p1.1.m1.1.21.4.cmml" id="p1.1.m1.1.21f.cmml" xref="p1.1.m1.1.21"/>
<apply id="p1.1.m1.1.21.5.cmml" xref="p1.1.m1.1.21.5">
<ci id="p1.1.m1.1.19.cmml" xref="p1.1.m1.1.19">normal-⋅</ci>
<ci id="p1.1.m1.1.18.cmml" xref="p1.1.m1.1.18">u</ci>
<apply id="p1.1.m1.1.20.cmml" xref="p1.1.m1.1.20">
<root id="p1.1.m1.1.20a.cmml" xref="p1.1.m1.1.20"/>
<apply id="p1.1.m1.1.20.2.cmml" xref="p1.1.m1.1.20.2">
<divide id="p1.1.m1.1.20.2.1.1.cmml"/>
<apply id="p1.1.m1.1.20.2.1.2.cmml" xref="p1.1.m1.1.20.2.1.2">
<minus id="p1.1.m1.1.20.2.1.2.1.cmml" xref="p1.1.m1.1.20.2.1.2.1"/>
<apply id="p1.1.m1.1.20.2.1.2.5.cmml" xref="p1.1.m1.1.20.2.1.2.5">
<times id="p1.1.m1.1.20.2.1.2.5.1.cmml" xref="p1.1.m1.1.20.2.1.2.5.1"/>
<cn type="integer" id="p1.1.m1.1.20.2.1.2.2.cmml" xref="p1.1.m1.1.20.2.1.2.2">2</cn>
<apply id="p1.1.m1.1.20.2.1.2.5.2.cmml" xref="p1.1.m1.1.20.2.1.2.5.2">
<ln id="p1.1.m1.1.20.2.1.2.3.cmml" xref="p1.1.m1.1.20.2.1.2.3"/>
<ci id="p1.1.m1.1.20.2.1.2.4.cmml" xref="p1.1.m1.1.20.2.1.2.4">s</ci>
</apply>
</apply>
</apply>
<ci id="p1.1.m1.1.20.2.1.3.cmml" xref="p1.1.m1.1.20.2.1.3">s</ci>
</apply>
</apply>
</apply>
</apply>
</apply>
</annotation-xml>
<annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle z_{0}={\sqrt{-2\ln U_{1}}}\cos(2\pi U_{2})={\sqrt{-2\ln s}}%
\left({\frac{u}{{\sqrt{s}}}}\right)=u\cdot{\sqrt{{\frac{-2\ln s}{s}}}}}</annotation>
</semantics>
[/itex]

SVG image empty. Force Re-Rendering

SVG (17.44 KB / 5.696 KB) :

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :

PNG (0 B / 8 B) :

${\displaystyle z_{0}={\sqrt {-2\ln U_{1}}}\cos(2\pi U_{2})={\sqrt {-2\ln s}}\left({\frac {u}{\sqrt {s}}}\right)=u\cdot {\sqrt {\frac {-2\ln s}{s}}}}$

Translations to Computer Algebra Systems

Translation to Maple

In Maple: z[0]=sqrt(- 2*ln(U)[1])*cos(2*pi*U[2])=sqrt(- 2*ln(s))*((u)/(sqrt(s)))= u *sqrt((- 2*ln(s))/(s))

\cos: Cosine; Example: \cos@@{z}

Will be translated to: cos($0) Relevant links to definitions: \ln: Natural logarithm; Example: \ln@@{z} Will be translated to: ln($0)

Constraints: z != 0

Branch Cuts: (-\infty, 0]

\cdot: was translated to: *

\pi: Could be the ratio of a circle's circumference to its diameter == Archimedes' constant.

But it is also a Greek letter. Be aware, that this program translated the letter as a normal Greek letter and not as a constant!

Use the DLMF-Macro \cpi to translate \pi as a constant.

Translation to Mathematica

In Mathematica: Subscript[z, 0]=Sqrt[- 2*Subscript[Log[U], 1]]*Cos[2*\[Pi]*Subscript[U, 2]]=Sqrt[- 2*Log[s]]*(Divide[u,Sqrt[s]])= u *Sqrt[Divide[- 2*Log[s],s]]

\cos: Cosine; Example: \cos@@{z}

Will be translated to: Cos[$0] Relevant links to definitions: \ln: Natural logarithm; Example: \ln@@{z} Will be translated to: Log[$0]

Constraints: z != 0

Branch Cuts: (-\infty, 0]

\cdot: was translated to: *

\pi: Could be the ratio of a circle's circumference to its diameter == Archimedes' constant.

But it is also a Greek letter. Be aware, that this program translated the letter as a normal Greek letter and not as a constant!

Use the DLMF-Macro \cpi to translate \pi as a constant.

Similar pages

Calculated based on the variables occurring on the entire Box–Muller transform page

Identifiers

• ${\displaystyle z_{0}}$
• ${\displaystyle U_{1}}$
• ${\displaystyle \pi }$
• ${\displaystyle U_{2}}$
• ${\displaystyle s}$
• ${\displaystyle u}$
• ${\displaystyle s}$
• ${\displaystyle u}$
• ${\displaystyle s}$
• ${\displaystyle s}$

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results