Jump to navigation Jump to search

General

Display information for equation id:math.221793.19 on revision:221793

* Page found: Cutoff frequency (eq math.221793.19)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: af40ec3e6925b7b24688a7b2fe93f3b9

TeX (original user input):

  \psi(x,y,z,t) = \psi(x,y)e^{i \left(\omega t - k_{z} z \right)},

TeX (checked):

\psi (x,y,z,t)=\psi (x,y)e^{i\left(\omega t-k_{z}z\right)},

LaTeXML (experimental; uses MathML) rendering

MathML (7.093 KB / 1.153 KB) :

ψ ( x , y , z , t ) = ψ ( x , y ) e i ( ω t - k z z ) , 𝜓 𝑥 𝑦 𝑧 𝑡 𝜓 𝑥 𝑦 superscript 𝑒 𝑖 𝜔 𝑡 subscript 𝑘 𝑧 𝑧 {\displaystyle\psi(x,y,z,t)=\psi(x,y)e^{{i\left(\omega t-k_{{z}}z\right)}},}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle\psi(x,y,z,t)=\psi(x,y)e^{{i\left(\omega t-k_{{z}}z\right)}},}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.21" xref="p1.1.m1.1.21.2.cmml">
      <mrow id="p1.1.m1.1.21.2" xref="p1.1.m1.1.21.2.cmml">
        <mrow id="p1.1.m1.1.21.2.1" xref="p1.1.m1.1.21.2.1.cmml">
          <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">ψ</mi>
          <mo id="p1.1.m1.1.21.2.1.1" xref="p1.1.m1.1.21.2.1.1.cmml"></mo>
          <mrow id="p1.1.m1.1.21.2.1.2" xref="p1.1.m1.1.21.2.1.2.1.cmml">
            <mo stretchy="false" id="p1.1.m1.1.2" xref="p1.1.m1.1.21.2.1.2.1.cmml">(</mo>
            <mi id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">x</mi>
            <mo id="p1.1.m1.1.4" xref="p1.1.m1.1.21.2.1.2.1.cmml">,</mo>
            <mi id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">y</mi>
            <mo id="p1.1.m1.1.6" xref="p1.1.m1.1.21.2.1.2.1.cmml">,</mo>
            <mi id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">z</mi>
            <mo id="p1.1.m1.1.8" xref="p1.1.m1.1.21.2.1.2.1.cmml">,</mo>
            <mi id="p1.1.m1.1.9" xref="p1.1.m1.1.9.cmml">t</mi>
            <mo stretchy="false" id="p1.1.m1.1.10" xref="p1.1.m1.1.21.2.1.2.1.cmml">)</mo>
          </mrow>
        </mrow>
        <mo id="p1.1.m1.1.11" xref="p1.1.m1.1.11.cmml">=</mo>
        <mrow id="p1.1.m1.1.21.2.2" xref="p1.1.m1.1.21.2.2.cmml">
          <mi id="p1.1.m1.1.12" xref="p1.1.m1.1.12.cmml">ψ</mi>
          <mo id="p1.1.m1.1.21.2.2.1" xref="p1.1.m1.1.21.2.2.1.cmml"></mo>
          <mrow id="p1.1.m1.1.21.2.2.2" xref="p1.1.m1.1.21.2.2.2.1.cmml">
            <mo stretchy="false" id="p1.1.m1.1.13" xref="p1.1.m1.1.21.2.2.2.1.cmml">(</mo>
            <mi id="p1.1.m1.1.14" xref="p1.1.m1.1.14.cmml">x</mi>
            <mo id="p1.1.m1.1.15" xref="p1.1.m1.1.21.2.2.2.1.cmml">,</mo>
            <mi id="p1.1.m1.1.16" xref="p1.1.m1.1.16.cmml">y</mi>
            <mo stretchy="false" id="p1.1.m1.1.17" xref="p1.1.m1.1.21.2.2.2.1.cmml">)</mo>
          </mrow>
          <mo id="p1.1.m1.1.21.2.2.1a" xref="p1.1.m1.1.21.2.2.1.cmml"></mo>
          <msup id="p1.1.m1.1.21.2.2.3" xref="p1.1.m1.1.21.2.2.3.cmml">
            <mi id="p1.1.m1.1.18" xref="p1.1.m1.1.18.cmml">e</mi>
            <mrow id="p1.1.m1.1.19.1" xref="p1.1.m1.1.19.1.cmml">
              <mi id="p1.1.m1.1.19.1.1" xref="p1.1.m1.1.19.1.1.cmml">i</mi>
              <mo id="p1.1.m1.1.19.1.10" xref="p1.1.m1.1.19.1.10.cmml"></mo>
              <mrow id="p1.1.m1.1.19.1.11" xref="p1.1.m1.1.19.1.11.2.cmml">
                <mo id="p1.1.m1.1.19.1.2" xref="p1.1.m1.1.19.1.11.2.cmml">(</mo>
                <mrow id="p1.1.m1.1.19.1.11.2" xref="p1.1.m1.1.19.1.11.2.cmml">
                  <mrow id="p1.1.m1.1.19.1.11.2.1" xref="p1.1.m1.1.19.1.11.2.1.cmml">
                    <mi id="p1.1.m1.1.19.1.3" xref="p1.1.m1.1.19.1.3.cmml">ω</mi>
                    <mo id="p1.1.m1.1.19.1.11.2.1.1" xref="p1.1.m1.1.19.1.11.2.1.1.cmml"></mo>
                    <mi id="p1.1.m1.1.19.1.4" xref="p1.1.m1.1.19.1.4.cmml">t</mi>
                  </mrow>
                  <mo id="p1.1.m1.1.19.1.5" xref="p1.1.m1.1.19.1.5.cmml">-</mo>
                  <mrow id="p1.1.m1.1.19.1.11.2.2" xref="p1.1.m1.1.19.1.11.2.2.cmml">
                    <msub id="p1.1.m1.1.19.1.11.2.2.2" xref="p1.1.m1.1.19.1.11.2.2.2.cmml">
                      <mi id="p1.1.m1.1.19.1.6" xref="p1.1.m1.1.19.1.6.cmml">k</mi>
                      <mi id="p1.1.m1.1.19.1.7.1" xref="p1.1.m1.1.19.1.7.1.cmml">z</mi>
                    </msub>
                    <mo id="p1.1.m1.1.19.1.11.2.2.1" xref="p1.1.m1.1.19.1.11.2.2.1.cmml"></mo>
                    <mi id="p1.1.m1.1.19.1.8" xref="p1.1.m1.1.19.1.8.cmml">z</mi>
                  </mrow>
                </mrow>
                <mo id="p1.1.m1.1.19.1.9" xref="p1.1.m1.1.19.1.11.2.cmml">)</mo>
              </mrow>
            </mrow>
          </msup>
        </mrow>
      </mrow>
      <mo id="p1.1.m1.1.20" xref="p1.1.m1.1.21.2.cmml">,</mo>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.21.2.cmml" xref="p1.1.m1.1.21">
        <eq id="p1.1.m1.1.11.cmml" xref="p1.1.m1.1.11"/>
        <apply id="p1.1.m1.1.21.2.1.cmml" xref="p1.1.m1.1.21.2.1">
          <times id="p1.1.m1.1.21.2.1.1.cmml" xref="p1.1.m1.1.21.2.1.1"/>
          <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝜓</ci>
          <vector id="p1.1.m1.1.21.2.1.2.1.cmml" xref="p1.1.m1.1.21.2.1.2">
            <ci id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">𝑥</ci>
            <ci id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5">𝑦</ci>
            <ci id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7">𝑧</ci>
            <ci id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9">𝑡</ci>
          </vector>
        </apply>
        <apply id="p1.1.m1.1.21.2.2.cmml" xref="p1.1.m1.1.21.2.2">
          <times id="p1.1.m1.1.21.2.2.1.cmml" xref="p1.1.m1.1.21.2.2.1"/>
          <ci id="p1.1.m1.1.12.cmml" xref="p1.1.m1.1.12">𝜓</ci>
          <interval closure="open" id="p1.1.m1.1.21.2.2.2.1.cmml" xref="p1.1.m1.1.21.2.2.2">
            <ci id="p1.1.m1.1.14.cmml" xref="p1.1.m1.1.14">𝑥</ci>
            <ci id="p1.1.m1.1.16.cmml" xref="p1.1.m1.1.16">𝑦</ci>
          </interval>
          <apply id="p1.1.m1.1.21.2.2.3.cmml" xref="p1.1.m1.1.21.2.2.3">
            <csymbol cd="ambiguous" id="p1.1.m1.1.21.2.2.3.1.cmml" xref="p1.1.m1.1.21.2.2.3">superscript</csymbol>
            <ci id="p1.1.m1.1.18.cmml" xref="p1.1.m1.1.18">𝑒</ci>
            <apply id="p1.1.m1.1.19.1.cmml" xref="p1.1.m1.1.19.1">
              <times id="p1.1.m1.1.19.1.10.cmml" xref="p1.1.m1.1.19.1.10"/>
              <ci id="p1.1.m1.1.19.1.1.cmml" xref="p1.1.m1.1.19.1.1">𝑖</ci>
              <apply id="p1.1.m1.1.19.1.11.2.cmml" xref="p1.1.m1.1.19.1.11">
                <minus id="p1.1.m1.1.19.1.5.cmml" xref="p1.1.m1.1.19.1.5"/>
                <apply id="p1.1.m1.1.19.1.11.2.1.cmml" xref="p1.1.m1.1.19.1.11.2.1">
                  <times id="p1.1.m1.1.19.1.11.2.1.1.cmml" xref="p1.1.m1.1.19.1.11.2.1.1"/>
                  <ci id="p1.1.m1.1.19.1.3.cmml" xref="p1.1.m1.1.19.1.3">𝜔</ci>
                  <ci id="p1.1.m1.1.19.1.4.cmml" xref="p1.1.m1.1.19.1.4">𝑡</ci>
                </apply>
                <apply id="p1.1.m1.1.19.1.11.2.2.cmml" xref="p1.1.m1.1.19.1.11.2.2">
                  <times id="p1.1.m1.1.19.1.11.2.2.1.cmml" xref="p1.1.m1.1.19.1.11.2.2.1"/>
                  <apply id="p1.1.m1.1.19.1.11.2.2.2.cmml" xref="p1.1.m1.1.19.1.11.2.2.2">
                    <csymbol cd="ambiguous" id="p1.1.m1.1.19.1.11.2.2.2.1.cmml" xref="p1.1.m1.1.19.1.11.2.2.2">subscript</csymbol>
                    <ci id="p1.1.m1.1.19.1.6.cmml" xref="p1.1.m1.1.19.1.6">𝑘</ci>
                    <ci id="p1.1.m1.1.19.1.7.1.cmml" xref="p1.1.m1.1.19.1.7.1">𝑧</ci>
                  </apply>
                  <ci id="p1.1.m1.1.19.1.8.cmml" xref="p1.1.m1.1.19.1.8">𝑧</ci>
                </apply>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle\psi(x,y,z,t)=\psi(x,y)e^{{i\left(\omega t-k_{{z}}z\right)}},}</annotation>
  </semantics>
</math>

SVG (12.313 KB / 4.075 KB) :

psi times left-parenthesis x comma y comma z comma t right-parenthesis equals psi times left-parenthesis x comma y right-parenthesis times e Superscript i times left-parenthesis omega times t minus k Super Subscript z Superscript times z right-parenthesis Baseline comma

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


PNG (0 B / 8 B) :


Translations to Computer Algebra Systems

Translation to Maple

In Maple: psi*(x , y , z , t)= psi*(x , y)* (e)^(i*(omega*t - k[z]*z)),

Information about the conversion process:

I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Maple uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


\psi: Could be The reciprocal Fibonacci constant.

But this system don't know how to translate it as a constant. It was translated as a general letter.


e: the mathematical constant e == Napier's constant == 2.71828182845... was translated to: e

exp(1): You use a typical letter for a constant [the mathematical constant e == Napier's constant == 2.71828182845...].

We keep it like it is! But you should know that Maple uses exp(1) for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \expe


i: the imaginary unit == the principal square root of -1 was translated to: i


Translation to Mathematica

In Mathematica: \[Psi]*(x , y , z , t)= \[Psi]*(x , y)* (e)^(i*(\[Omega]*t - Subscript[k, z]*z)),

Information about the conversion process:

E: You use a typical letter for a constant [the mathematical constant e == Napier's constant == 2.71828182845...].

We keep it like it is! But you should know that Mathematica uses E for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \expe


I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Mathematica uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


\psi: Could be The reciprocal Fibonacci constant.

But this system don't know how to translate it as a constant. It was translated as a general letter.


e: the mathematical constant e == Napier's constant == 2.71828182845... was translated to: e

i: the imaginary unit == the principal square root of -1 was translated to: i


Similar pages

Calculated based on the variables occurring on the entire Cutoff frequency page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results