Jump to navigation Jump to search

General

Display information for equation id:math.221793.1 on revision:221793

* Page found: Cutoff frequency (eq math.221793.1)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: 17cf4602a3e3b1bcbc0e72b28a774fde

TeX (original user input):

H(s) = \frac {1}{1+\alpha s}

TeX (checked):

H(s)={\frac {1}{1+\alpha s}}

LaTeXML (experimental; uses MathML) rendering

MathML (2.915 KB / 699 B) :

H ( s ) = 1 1 + α s 𝐻 𝑠 1 1 𝛼 𝑠 {\displaystyle H(s)={\frac{1}{1+\alpha s}}}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle H(s)={\frac{1}{1+\alpha s}}}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">
      <mrow id="p1.1.m1.1.7.1" xref="p1.1.m1.1.7.1.cmml">
        <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">H</mi>
        <mo id="p1.1.m1.1.7.1.1" xref="p1.1.m1.1.7.1.1.cmml"></mo>
        <mrow id="p1.1.m1.1.7.1.2" xref="p1.1.m1.1.7.1.cmml">
          <mo stretchy="false" id="p1.1.m1.1.2" xref="p1.1.m1.1.7.1.cmml">(</mo>
          <mi id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">s</mi>
          <mo stretchy="false" id="p1.1.m1.1.4" xref="p1.1.m1.1.7.1.cmml">)</mo>
        </mrow>
      </mrow>
      <mo id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">=</mo>
      <mstyle displaystyle="true" id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">
        <mfrac id="p1.1.m1.1.6a" xref="p1.1.m1.1.6.cmml">
          <mn id="p1.1.m1.1.6.2" xref="p1.1.m1.1.6.2.cmml">1</mn>
          <mrow id="p1.1.m1.1.6.3" xref="p1.1.m1.1.6.3.cmml">
            <mn id="p1.1.m1.1.6.3.1" xref="p1.1.m1.1.6.3.1.cmml">1</mn>
            <mo id="p1.1.m1.1.6.3.2" xref="p1.1.m1.1.6.3.2.cmml">+</mo>
            <mrow id="p1.1.m1.1.6.3.5" xref="p1.1.m1.1.6.3.5.cmml">
              <mi id="p1.1.m1.1.6.3.3" xref="p1.1.m1.1.6.3.3.cmml">α</mi>
              <mo id="p1.1.m1.1.6.3.5.1" xref="p1.1.m1.1.6.3.5.1.cmml"></mo>
              <mi id="p1.1.m1.1.6.3.4" xref="p1.1.m1.1.6.3.4.cmml">s</mi>
            </mrow>
          </mrow>
        </mfrac>
      </mstyle>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7">
        <eq id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5"/>
        <apply id="p1.1.m1.1.7.1.cmml" xref="p1.1.m1.1.7.1">
          <times id="p1.1.m1.1.7.1.1.cmml" xref="p1.1.m1.1.7.1.1"/>
          <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝐻</ci>
          <ci id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">𝑠</ci>
        </apply>
        <apply id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6">
          <divide id="p1.1.m1.1.6.1.cmml" xref="p1.1.m1.1.6"/>
          <cn type="integer" id="p1.1.m1.1.6.2.cmml" xref="p1.1.m1.1.6.2">1</cn>
          <apply id="p1.1.m1.1.6.3.cmml" xref="p1.1.m1.1.6.3">
            <plus id="p1.1.m1.1.6.3.2.cmml" xref="p1.1.m1.1.6.3.2"/>
            <cn type="integer" id="p1.1.m1.1.6.3.1.cmml" xref="p1.1.m1.1.6.3.1">1</cn>
            <apply id="p1.1.m1.1.6.3.5.cmml" xref="p1.1.m1.1.6.3.5">
              <times id="p1.1.m1.1.6.3.5.1.cmml" xref="p1.1.m1.1.6.3.5.1"/>
              <ci id="p1.1.m1.1.6.3.3.cmml" xref="p1.1.m1.1.6.3.3">𝛼</ci>
              <ci id="p1.1.m1.1.6.3.4.cmml" xref="p1.1.m1.1.6.3.4">𝑠</ci>
            </apply>
          </apply>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle H(s)={\frac{1}{1+\alpha s}}}</annotation>
  </semantics>
</math>

SVG (5.9 KB / 2.367 KB) :

upper H times left-parenthesis s right-parenthesis equals StartFraction 1 Over 1 plus alpha times s EndFraction

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


PNG (0 B / 8 B) :


Translations to Computer Algebra Systems

Translation to Maple

In Maple: H*(s)=(1)/(1 + alpha*s)

Information about the conversion process:

\alpha: Could be the second Feigenbaum constant.

But this system don't know how to translate it as a constant. It was translated as a general letter.



Translation to Mathematica

In Mathematica: H*(s)=Divide[1,1 + \[Alpha]*s]

Information about the conversion process:

\alpha: Could be the second Feigenbaum constant.

But this system don't know how to translate it as a constant. It was translated as a general letter.



Similar pages

Calculated based on the variables occurring on the entire Cutoff frequency page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results