Jump to navigation Jump to search

General

Display information for equation id:math.219389.40 on revision:219389

* Page found: Expected value (eq math.219389.40)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: b65928a130f935417c22aae725bd2d01

TeX (original user input):

\sum_{i= 1}^\infty (1-p)^i=\frac{1}{p}-1

TeX (checked):

\sum _{i=1}^{\infty }(1-p)^{i}={\frac {1}{p}}-1

LaTeXML (experimental; uses MathML) rendering

MathML (4.482 KB / 943 B) :

i = 1 ( 1 - p ) i = 1 p - 1 superscript subscript i 1 superscript 1 p i 1 p 1 {\displaystyle\sum_{{i=1}}^{\infty}(1-p)^{i}={\frac{1}{p}}-1}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle\sum_{{i=1}}^{\infty}(1-p)^{i}={\frac{1}{p}}-1}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.14" xref="p1.1.m1.1.14.cmml">
      <mrow id="p1.1.m1.1.14.1" xref="p1.1.m1.1.14.1.cmml">
        <mstyle displaystyle="true" id="p1.1.m1.1.14.1.1" xref="p1.1.m1.1.14.1.1.cmml">
          <munderover id="p1.1.m1.1.14.1.1a" xref="p1.1.m1.1.14.1.1.cmml">
            <mo largeop="true" movablelimits="false" symmetric="true" id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml"></mo>
            <mrow id="p1.1.m1.1.2.1" xref="p1.1.m1.1.2.1.cmml">
              <mi id="p1.1.m1.1.2.1.1" xref="p1.1.m1.1.2.1.1.cmml">i</mi>
              <mo id="p1.1.m1.1.2.1.2" xref="p1.1.m1.1.2.1.2.cmml">=</mo>
              <mn id="p1.1.m1.1.2.1.3" xref="p1.1.m1.1.2.1.3.cmml">1</mn>
            </mrow>
            <mi mathvariant="normal" id="p1.1.m1.1.3.1" xref="p1.1.m1.1.3.1.cmml"></mi>
          </munderover>
        </mstyle>
        <msup id="p1.1.m1.1.14.1.2" xref="p1.1.m1.1.14.1.2.cmml">
          <mrow id="p1.1.m1.1.14.1.2.2" xref="p1.1.m1.1.14.1.2.2.2.cmml">
            <mo stretchy="false" id="p1.1.m1.1.4">(</mo>
            <mrow id="p1.1.m1.1.14.1.2.2.2" xref="p1.1.m1.1.14.1.2.2.2.cmml">
              <mn id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">1</mn>
              <mo id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">-</mo>
              <mi id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">p</mi>
            </mrow>
            <mo stretchy="false" id="p1.1.m1.1.8">)</mo>
          </mrow>
          <mi id="p1.1.m1.1.9.1" xref="p1.1.m1.1.9.1.cmml">i</mi>
        </msup>
      </mrow>
      <mo id="p1.1.m1.1.10" xref="p1.1.m1.1.10.cmml">=</mo>
      <mrow id="p1.1.m1.1.14.2" xref="p1.1.m1.1.14.2.cmml">
        <mstyle displaystyle="true" id="p1.1.m1.1.11" xref="p1.1.m1.1.11.cmml">
          <mfrac id="p1.1.m1.1.11a" xref="p1.1.m1.1.11.cmml">
            <mn id="p1.1.m1.1.11.2" xref="p1.1.m1.1.11.2.cmml">1</mn>
            <mi id="p1.1.m1.1.11.3" xref="p1.1.m1.1.11.3.cmml">p</mi>
          </mfrac>
        </mstyle>
        <mo id="p1.1.m1.1.12" xref="p1.1.m1.1.12.cmml">-</mo>
        <mn id="p1.1.m1.1.13" xref="p1.1.m1.1.13.cmml">1</mn>
      </mrow>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.14.cmml" xref="p1.1.m1.1.14">
        <eq id="p1.1.m1.1.10.cmml" xref="p1.1.m1.1.10"/>
        <apply id="p1.1.m1.1.14.1.cmml" xref="p1.1.m1.1.14.1">
          <apply id="p1.1.m1.1.14.1.1.cmml" xref="p1.1.m1.1.14.1.1">
            <csymbol cd="ambiguous" id="p1.1.m1.1.14.1.1.1.cmml">superscript</csymbol>
            <apply id="p1.1.m1.1.14.1.1.2.cmml">
              <csymbol cd="ambiguous" id="p1.1.m1.1.14.1.1.2.1.cmml">subscript</csymbol>
              <sum id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1"/>
              <apply id="p1.1.m1.1.2.1.cmml" xref="p1.1.m1.1.2.1">
                <eq id="p1.1.m1.1.2.1.2.cmml" xref="p1.1.m1.1.2.1.2"/>
                <ci id="p1.1.m1.1.2.1.1.cmml" xref="p1.1.m1.1.2.1.1">i</ci>
                <cn type="integer" id="p1.1.m1.1.2.1.3.cmml" xref="p1.1.m1.1.2.1.3">1</cn>
              </apply>
            </apply>
            <infinity id="p1.1.m1.1.3.1.cmml" xref="p1.1.m1.1.3.1"/>
          </apply>
          <apply id="p1.1.m1.1.14.1.2.cmml" xref="p1.1.m1.1.14.1.2">
            <csymbol cd="ambiguous" id="p1.1.m1.1.14.1.2.1.cmml">superscript</csymbol>
            <apply id="p1.1.m1.1.14.1.2.2.2.cmml" xref="p1.1.m1.1.14.1.2.2">
              <minus id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6"/>
              <cn type="integer" id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5">1</cn>
              <ci id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7">p</ci>
            </apply>
            <ci id="p1.1.m1.1.9.1.cmml" xref="p1.1.m1.1.9.1">i</ci>
          </apply>
        </apply>
        <apply id="p1.1.m1.1.14.2.cmml" xref="p1.1.m1.1.14.2">
          <minus id="p1.1.m1.1.12.cmml" xref="p1.1.m1.1.12"/>
          <apply id="p1.1.m1.1.11.cmml" xref="p1.1.m1.1.11">
            <divide id="p1.1.m1.1.11.1.cmml"/>
            <cn type="integer" id="p1.1.m1.1.11.2.cmml" xref="p1.1.m1.1.11.2">1</cn>
            <ci id="p1.1.m1.1.11.3.cmml" xref="p1.1.m1.1.11.3">p</ci>
          </apply>
          <cn type="integer" id="p1.1.m1.1.13.cmml" xref="p1.1.m1.1.13">1</cn>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle\sum_{{i=1}}^{\infty}(1-p)^{i}={\frac{1}{p}}-1}</annotation>
  </semantics>
</math>

SVG image empty. Force Re-Rendering

SVG (7.05 KB / 2.587 KB) :

sigma-summation Underscript i equals 1 Overscript normal infinity Endscripts left-parenthesis 1 minus p right-parenthesis Superscript i Baseline equals StartFraction 1 Over p EndFraction minus 1

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


PNG (0 B / 8 B) :


Translations to Computer Algebra Systems

Translation to Maple

In Maple: sum((1 - p)^(i), i = 1..infinity)=(1)/(p)- 1

Information about the conversion process:

i: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Maple uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit



Translation to Mathematica

In Mathematica: Sum[(1 - p)^(i), {i, 1, Infinity}]=Divide[1,p]- 1

Information about the conversion process:

i: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Mathematica uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit



Similar pages

Calculated based on the variables occurring on the entire Expected value page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results