Difference between revisions of "Quotient category"

From formulasearchengine
Jump to navigation Jump to search
en>BD2412
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[mathematics]], a '''quotient category''' is a [[category (mathematics)|category]] obtained from another one by identifying sets of [[morphism]]s. The notion is similar to that of a [[quotient group]] or [[quotient space]], but in the categorical setting.
In [[mathematics]], a '''quotient category''' is a [[category (mathematics)|category]] obtained from another one by identifying sets of [[morphism]]s. The notion is similar to that of a [[quotient group]] or [[Quotient space (topology)|quotient space]], but in the categorical setting.


==Definition==
==Definition==
Line 10: Line 10:


Given a congruence relation ''R'' on ''C'' we can define the '''quotient category''' ''C''/''R'' as the category whose objects are those of ''C'' and whose morphisms are [[equivalence class]]es of morphisms in ''C''. That is,
Given a congruence relation ''R'' on ''C'' we can define the '''quotient category''' ''C''/''R'' as the category whose objects are those of ''C'' and whose morphisms are [[equivalence class]]es of morphisms in ''C''. That is,
:<math>\mathrm{Hom}_{\mathcal C/\mathcal R}(X,Y) = \mathrm{Hom}_{\mathcal C}(X,Y)/R_{X,Y}.</math>
:<math>\mathrm{Hom}_{\mathcal{C}/\mathcal{R}}(X,Y) = \mathrm{Hom}_{\mathcal{C}}(X,Y)/R_{X,Y}.</math>


Composition of morphisms in ''C''/''R'' is [[well-defined]] since ''R'' is a congruence relation.
Composition of morphisms in ''C''/''R'' is [[well-defined]] since ''R'' is a congruence relation.

Latest revision as of 17:18, 18 June 2014

In mathematics, a quotient category is a category obtained from another one by identifying sets of morphisms. The notion is similar to that of a quotient group or quotient space, but in the categorical setting.

Definition

Let C be a category. A congruence relation R on C is given by: for each pair of objects X, Y in C, an equivalence relation RX,Y on Hom(X,Y), such that the equivalence relations respect composition of morphisms. That is, if

are related in Hom(X, Y) and

are related in Hom(Y, Z) then g1f1, g1f2, g2f1 and g2f2 are related in Hom(X, Z).

Given a congruence relation R on C we can define the quotient category C/R as the category whose objects are those of C and whose morphisms are equivalence classes of morphisms in C. That is,

Composition of morphisms in C/R is well-defined since R is a congruence relation.

There is also a notion of taking the quotient of an Abelian category A by a Serre subcategory B. This is done as follows. The objects of A/B are the objects of A. Given two objects X and Y of A, we define the set of morphisms from X to Y in A/B to be where the limit is over subobjects and such that . Then A/B is an Abelian category, and there is a canonical functor . This Abelian quotient satisfies the universal property that if C is any other Abelian category, and is an exact functor such that F(b) is a zero object of C for each , then there is a unique exact functor such that . (See [Gabriel].)

Properties

There is a natural quotient functor from C to C/R which sends each morphism to its equivalence class. This functor is bijective on objects and surjective on Hom-sets (i.e. it is a full functor).

Examples

See also

References