Multiset: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Quondum
Undid revision 593845263 by 210.212.53.138 (talk)
en>Daqu
Clarified the informal definition of a multiset
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{norefs|date=April 2013}}
Fascinated to meet you! The little name is Eusebio Ledbetter. To drive is a complete thing that I'm ultimately addicted to. South Carolina is where all of my home is and Since [https://www.gov.uk/search?q=i+don%27t i don't] plan on shifting it. I used as a way to be unemployed but actually I am a cashier but the promotion for no reason comes. I'm not good at webdesign but you might want to check my website: http://prometeu.net<br><br>


In [[mathematics]], '''Steinhaus–[[Leo Moser|Moser]] notation''' is a [[mathematical notation|notation]] for expressing certain extremely [[large number]]s. It is an extension of [[Hugo Steinhaus|Steinhaus]]'s polygon notation.
Stop by my site; [http://prometeu.net clash of clans hack tool no survey or password]
 
== Definitions ==
:[[image:Triangle-n.svg|20px|n in a triangle]] a number {{math|<VAR >n</VAR >}} in a '''triangle''' means {{math|<VAR >n</VAR ><sup><VAR >n</VAR ></sup>}}.
 
:[[image:Square-n.svg|20px|n in a square]] a number {{math|<VAR >n</VAR >}} in a '''square''' is equivalent to "the  number {{math|<VAR >n</VAR >}} inside {{math|<VAR >n</VAR >}} triangles, which are all nested."
 
:[[image:Pentagon-n.svg|20px|n in a pentagon]] a number {{math|<VAR >n</VAR >}} in a '''pentagon''' is equivalent with "the  number {{math|<VAR >n</VAR >}} inside {{math|<VAR >n</VAR >}} squares, which are all nested."
 
etc.: {{math|<VAR >n</VAR >}} written in an ({{math|<VAR >m</VAR > + 1}})-sided polygon is equivalent with "the  number {{math|<VAR >n</VAR >}} inside {{math|<VAR >n</VAR >}} nested {{math|<VAR >m</VAR >}}-sided polygons". In a series of nested polygons, they are [[Association (mathematics)|associated]] inward. The number {{math|<VAR >n</VAR >}} inside two triangles is equivalent to {{math|<VAR >n</VAR ><sup><VAR >n</VAR ></sup >}} inside one triangle, which is equivalent to {{math|<VAR >n</VAR ><sup><VAR >n</VAR ></sup>}} raised to the power of {{math|<VAR >n</VAR ><sup><VAR >n</VAR ></sup>}}.
 
Steinhaus only defined the triangle, the square, and a '''circle''' [[image:Circle-n.svg|20px|n in a circle]], equivalent to the pentagon defined above.
 
== Special values ==
Steinhaus defined:
*'''mega''' is the number equivalent to 2 in a circle: {{h:title|<nowiki>C(2) = S(S(2))</nowiki>|②}}
*'''megiston''' is the number equivalent to 10 in a circle: ⑩
 
'''Moser's number''' is the number represented by "2 in a megagon", where a '''megagon''' is a polygon with "mega" sides.
 
Alternative notations:
*use the functions square(x) and triangle(x)
*let {{math|M(<VAR >n</VAR >, <VAR >m</VAR >, <VAR >p</VAR >)}} be the number represented by the number {{math|<VAR >n</VAR >}} in {{math|<VAR >m</VAR >}} nested {{math|<VAR >p</VAR >}}-sided polygons; then the rules are:
**<math>M(n,1,3) = n^n</math>
**<math>M(n,1,p+1) = M(n,n,p)</math>
**<math>M(n,m+1,p) = M(M(n,1,p),m,p)</math>
* and
**mega =&nbsp;<math>M(2,1,5)</math>
**megiston =&nbsp;<math>M(10,1,5)</math>
**moser =&nbsp;<math>M(2,1,M(2,1,5))</math>
 
==Mega==
A mega, ②, is already a very large number, since ② =
square(square(2)) = square(triangle(triangle(2))) =
square(triangle(2<sup>2</sup>)) =
square(triangle(4)) =
square(4<sup>4</sup>) =
square(256) =
triangle(triangle(triangle(...triangle(256)...)))  [256 triangles] =
triangle(triangle(triangle(...triangle(256<sup>256</sup>)...)))  [255 triangles] ~
triangle(triangle(triangle(...triangle(3.2 &times; 10<sup>616</sup>)...)))  [254 triangles] =
...
 
Using the other notation:
 
mega = M(2,1,5) = M(256,256,3)
 
With the function <math>f(x)=x^x</math> we have mega = <math>f^{256}(256)  = f^{258}(2)</math> where the superscript denotes a [[composite function|functional power]], not a numerical power.
 
We have (note the convention that powers are evaluated from right to left):
*M(256,2,3) = <math>(256^{\,\!256})^{256^{256}}=256^{256^{257}}</math>
*M(256,3,3) = <math>(256^{\,\!256^{257}})^{256^{256^{257}}}=256^{256^{257}\times 256^{256^{257}}}=256^{256^{257+256^{257}}}</math>≈<math>256^{\,\!256^{256^{257}}}</math>
Similarly:
*M(256,4,3) ≈ <math>{\,\!256^{256^{256^{256^{257}}}}}</math>
*M(256,5,3) ≈ <math>{\,\!256^{256^{256^{256^{256^{257}}}}}}</math>
etc.
 
Thus:
*mega = <math>M(256,256,3)\approx(256\uparrow)^{256}257</math>, where <math>(256\uparrow)^{256}</math> denotes a functional power of the function <math>f(n)=256^n</math>.
 
Rounding more crudely (replacing the 257 at the end by 256), we get mega ≈ <math>256\uparrow\uparrow 257</math>, using [[Knuth's up-arrow notation]].
 
After the first few steps the value of <math>n^n</math> is each time approximately equal to <math>256^n</math>. In fact, it is even approximately equal to <math>10^n</math> (see also [[Large numbers#Approximate arithmetic for very large numbers|approximate arithmetic for very large numbers]]). Using base 10 powers we get:
*<math>M(256,1,3)\approx 3.23\times 10^{616}</math>
*<math>M(256,2,3)\approx10^{\,\!1.99\times 10^{619}}</math> (<math>\log _{10} 616</math> is added to the 616)
*<math>M(256,3,3)\approx10^{\,\!10^{1.99\times 10^{619}}}</math> (<math>619</math> is added to the <math>1.99\times 10^{619}</math>, which is negligible; therefore just a 10 is added at the bottom)
 
*<math>M(256,4,3)\approx10^{\,\!10^{10^{1.99\times 10^{619}}}}</math>
...
*mega = <math>M(256,256,3)\approx(10\uparrow)^{255}1.99\times 10^{619}</math>, where <math>(10\uparrow)^{255}</math> denotes a functional power of the function <math>f(n)=10^n</math>. Hence <math>10\uparrow\uparrow 257 < \text{mega} < 10\uparrow\uparrow 258</math>
 
==Moser's number<!--This section is linked from [[Moser's number]]-->==
 
It has been proven that in [[Conway chained arrow notation]],
 
:<math>\mathrm{moser} < 3\rightarrow 3\rightarrow 4\rightarrow 2,</math>
 
and, in [[Knuth's up-arrow notation]],
 
:<math>\mathrm{moser} < f^{3}(4) = f(f(f(4))), \text{ where } f(n) = 3 \uparrow^n 3.</math>
 
Therefore Moser's number, although incomprehensibly large, is vanishingly small compared to [[Graham's number]]:
 
:<math>\mathrm{moser} \ll  3\rightarrow 3\rightarrow 64\rightarrow 2 < f^{64}(4) = \text{Graham's number}.</math>
 
== See also ==
* [[Ackermann function]]
 
==External links==
* [http://www.mrob.com/pub/math/largenum.html Robert Munafo's Large Numbers]
* [http://www-users.cs.york.ac.uk/~susan/cyc/b/big.htm Factoid on Big Numbers]
*[http://mathworld.wolfram.com/Megistron.html Megistron at mathworld.wolfram.com]
*[http://mathworld.wolfram.com/CircleNotation.html Circle notation at mathworld.wolfram.com]
 
{{Large numbers}}
 
{{DEFAULTSORT:Steinhaus-Moser notation}}
[[Category:Mathematical notation]]
[[Category:Large numbers]]

Latest revision as of 23:10, 28 November 2014

Fascinated to meet you! The little name is Eusebio Ledbetter. To drive is a complete thing that I'm ultimately addicted to. South Carolina is where all of my home is and Since i don't plan on shifting it. I used as a way to be unemployed but actually I am a cashier but the promotion for no reason comes. I'm not good at webdesign but you might want to check my website: http://prometeu.net

Stop by my site; clash of clans hack tool no survey or password