Main Page: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 1: Line 1:
{{No footnotes|date=April 2010}}
{{Wiktionary|CW|cW}}
{{TOCright}}
'''CW''' may stand for:


{{Bayesian statistics}}
==Radio==
* [[Continuous wave]], a method of carrier wave modulation used for sending Morse code


The '''principle of indifference''' (also called '''principle of insufficient reason''') is a rule for assigning [[epistemic probability|epistemic probabilities]].
==Arts==
Suppose that there are ''n'' > 1 [[mutually exclusive]] and [[collectively exhaustive]] possibilities.
* [[Carl Wheezer]], a character in Jimmy Neutron: Boy Genius
The principle of indifference states that if the ''n'' possibilities are indistinguishable except for their names,
* [[Creative writing]]
then each possibility should be assigned a probability equal to 1/''n''.
* ''[[Cryptic Writings]]'', an album by Megadeth


In [[Bayesian probability]], this is the simplest [[Prior probability#Uninformative priors|non-informative prior]].
==Companies==
The principle of indifference is meaningless under the [[Frequency probability|frequency interpretation of probability]],{{citation needed|date=July 2013}} in which probabilities are relative frequencies rather than degrees of belief in uncertain propositions, conditional upon state information.
* [[Cable & Wireless plc]], a British telecommunications company
* [[Colonial Williamsburg]]
* [[Curtiss-Wright]], an engineering company (NYSE: CW)
===Television===
* [[The CW]], a television network
** One of the [[List of The CW Television Network affiliates]]


==Examples==
==Military==
* [[Chemical warfare]]
* [[Chemical weapon]]
* [[Cold War]]
* [[Warrant officer]] (when followed by a numerical designation of rank)


The textbook examples for the application of the principle of indifference are [[coin]]s, [[dice]], and [[playing cards|cards]].
==Places==
* [[Air Marshall Islands]] IATA code
* [[Canada West]], an obsolete designation for the western part of Canada
* [[Canada's Wonderland]], an amusement park in Vaughan, Ontario, Canada
* [[Cook Islands]] (FIPS Pub 10-4 and obsolete NATO diagram)
* [[County Carlow]], a county in Ireland
* [[Curaçao]] ISO 3166-1 alpha-2 country code
* [[Calw]], a city in southern Germany
* [[CW postcode area]] around Crewe, England


In a [[macroscopic]] system, at least,
==Publications==
it must be assumed that the physical laws which govern the system are not known well enough to predict the outcome.
* ''[[Computerworld]]'', an information technology magazine
As observed some centuries ago by [[John Arbuthnot]] (in the preface of ''Of the Laws of Chance'', 1692),
* ''[[The Crimson White]]'', a student-run newspaper of the University of Alabama


:It is impossible for a Die, with such determin'd force and direction, not to fall on such determin'd side, only I don't know the force and direction which makes it fall on such determin'd side, and therefore I call it Chance, which is nothing but the want of art....
==Religion and philosophy==
* [[Common Worship]], a liturgy of the Church of England
* [[Conventional wisdom]], a description of ideas that are generally accepted as true


Given enough time and resources,
==Sciences==
there is no fundamental reason to suppose that suitably precise measurements could not be made,
* [[Carrier wave]]
which would enable the prediction of the outcome of coins, dice, and cards with high accuracy: [[Persi Diaconis]]'s work with [[coin flipping|coin-flipping]] machines is a practical example of this.
* centiwatt (cW), one hundredth of a [[watt]]
* [[Continuous wave]], a method of radio transmission (telegraphy) and a microwave theory
** [[Morse code]]
* [[CW complex]], a type of topological space
* [[Drag coefficient]], a measure of air resistance commonly denoted <math>\bold c_\mathrm w\,</math>
* [[IEEE_802.11e-2005#Enhanced_distributed_channel_access_.28EDCA.29|Contention Window]], a network traffic technique


===Coins===
==Software==
* [[Castle Wolfenstein]], a video game
* [[ClarisWorks]], an office suite now known as AppleWorks
* [[CodeWarrior]], an integrated development environment by Metrowerks
* [[Cω]], a programming language
* [[Cube World]], a video game


A [[symmetry|symmetric]] coin has two sides, arbitrarily labeled ''heads'' and ''tails''.  
==Sports==
Assuming that the coin must land on one side or the other,
* [[Cruiserweight (boxing)]]
the outcomes of a coin toss are mutually exclusive, exhaustive, and interchangeable.
* [[C. W. Anderson]], a professional wrestler
According to the principle of indifference, we assign each of the possible outcomes a probability of 1/2.


It is implicit in this analysis that the forces acting on the coin are not known with any precision.
==Direction==
If the momentum imparted to the coin as it is launched were known with sufficient accuracy,
* [[Clockwise]]
the flight of the coin could be predicted according to the laws of mechanics.
Thus the uncertainty in the outcome of a coin toss is derived (for the most part) from the uncertainty with respect to initial conditions.
This point is discussed at greater length in the article on [[Coin flipping#Physics|coin flipping]].


There is also a third possible outcome: the coin could land on its edge.
{{Disambiguation}}
However,
the principle of indifference doesn't say anything about this outcome, as the labels ''head'', ''tail'', and ''edge'' are not interchangeable.
One could argue, though, that ''head'' and ''tail'' remain interchangeable, and therefore Pr(''head'') and Pr(''tail'') are equal, and both are equal to 1/2 (1 - Pr(''edge'')).
 
===Dice===
 
A [[symmetry|symmetric]] [[dice]] has ''n'' faces, arbitrarily labeled from 1 to ''n''.
Ordinary cubical dice have ''n'' = 6 faces,
although symmetric dice with different numbers of faces can be constructed;
see [[dice]].
We assume that the die must land on one face or another,
and there are no other possible outcomes.
Applying the principle of indifference, we assign each of the possible outcomes a probability of 1/''n''.
 
As with coins,
it is assumed that the initial conditions of throwing the dice are not known
with enough precision to predict the outcome according to the laws of mechanics.
Dice are typically thrown so as to bounce on a table or other surface.
This interaction makes prediction of the outcome much more difficult.
 
===Cards===
 
A standard deck contains 52 cards, each given a unique label in an arbitrary fashion, i.e. arbitrarily ordered. We draw a card from the deck; applying the principle of indifference, we assign each of the possible outcomes a probability of 1/52.
 
This example, more than the others, shows the difficulty of actually applying the principle of indifference in real situations. What we really mean by the phrase "arbitrarily ordered" is simply that we don't have any information that would lead us to favor a particular card. In actual practice, this is rarely the case: a new deck of cards is certainly not in arbitrary order, and neither is a deck immediately after a hand of cards. In practice, we therefore [[shuffling playing cards|shuffle]] the cards; this does not destroy the information we have, but instead (hopefully) renders our information practically unusable, although it is still usable in principle. In fact, some expert blackjack players can track aces through the deck; for them, the condition for applying the principle of indifference is not satisfied.
 
==Application to continuous variables==
 
Applying the principle of indifference incorrectly can easily lead to nonsensical results, especially in the case of multivariate, continuous variables.  A typical case of misuse is the following example.
 
*Suppose there is a cube hidden in a box. A label on the box says the cube has a side length between 3 and 5&nbsp;cm.
* We don't know the actual side length, but we might assume that all values are equally likely and simply pick the mid-value of 4&nbsp;cm.
* The information on the label allows us to calculate that the surface area of the cube is between 54 and 150&nbsp;cm². We don't know the actual surface area, but we might assume that all values are equally likely and simply pick the mid-value of 102&nbsp;cm².
* The information on the label allows us to calculate that the volume of the cube is between 27 and 125&nbsp;cm<sup>3</sup>. We don't know the actual volume, but we might assume that all values are equally likely and simply pick the mid-value of 76&nbsp;cm<sup>3</sup>.
* However, we have now reached the impossible conclusion that the cube has a side length of 4&nbsp;cm, a surface area of 102&nbsp;cm², and a volume of 76&nbsp;cm<sup>3</sup>!
 
In this example, mutually contradictory estimates of the length, surface area, and volume of the cube arise because we have assumed three mutually contradictory distributions for these parameters: a [[uniform distribution (continuous)|uniform distribution]] for any one of the variables implies a non-uniform distribution for the other two. (The same paradox arises if we make it discrete: the side is either exactly 3&nbsp;cm, 4&nbsp;cm, or 5&nbsp;cm, mutatis mutandis.)  In general, the principle of indifference does not indicate which variable (e.g. in this case, length, surface area, or volume) is to have a uniform epistemic probability distribution.
 
Another classic example of this kind of misuse is [[Bertrand's paradox (probability)|Bertrand's paradox]].  [[Edwin T. Jaynes]] introduced the [[principle of transformation groups]], which can yield an epistemic probability distribution for this problem.  This generalises the principle of indifference, by saying that one is indifferent between ''equivalent problems'' rather than indifference between propositions.  This still reduces to the ordinary principle of indifference when one considers a permutation of the labels as generating equivalent problems (i.e. using the permutation transformation group).  To apply this to the above box example, we have three problems, with no reason to think one problem is "our problem" more than any other - we are indifferent between each.  If we have no reason to favour one over the other, then our prior probabilities must be related by the rule for changing variables in continuous distributions.  Let ''L'' be the length, and ''V'' be the volume.  Then we must have
 
:<math>f(L)=|{\partial V \over \partial L}|f(V)=3 L^{2} f(L^{3})</math>
 
Which has a general solution: <math>f(L) = {K \over L}</math> Where ''K'' is an arbitrary constant, determined by the range of ''L'', in this case equal to:
 
:<math>K^{-1}=\int_{3}^{5}{dL \over L} = \log({5 \over 3})</math>
 
To put this "to the test", we ask for the probability that the length is less than 4.  This has probability of:
 
:<math>Pr(L<4)=\int_{3}^{4}{dL \over L \log({5 \over 3})}= {\log({4 \over 3}) \over \log({5 \over 3})} \approx 0.56</math>.
 
For the volume, this should be equal to the probability that the volume is less than 4<sup>3</sup> = 64.  The pdf of the volume is
 
:<math>f(V^{{1 \over 3}}) {1 \over 3} V^{-{2 \over 3}}={1 \over 3 V \log({5 \over 3})}</math>.
 
And then probability of volume less than 64 is
 
:<math>Pr(V<64)=\int_{27}^{64}{dV \over 3 V \log({5 \over 3})}={\log({64 \over 27}) \over 3 \log({5 \over 3})}={3 \log({4 \over 3}) \over 3 \log({5 \over 3})}={\log({4 \over 3}) \over \log({5 \over 3})} \approx 0.56</math>.
 
Thus we have achieved invariance with respect to volume and length.  You can also show the same invariance with respect to surface area being less than 6(4<sup>2</sup>) = 96.  However, note that this probability assignment is not necessarily a "correct" one.  For the exact distribution of lengths, volume, or surface area will depend on how the "experiment" is conducted.  This probability assignment is very similar to the [[maximum entropy]] one, in that the frequency distribution corresponding to the above probability distribution is the most likely to be seen.  So, if one was to go to ''N'' people individually and simply say "make me a box somewhere between 3 and 5 cm, or a volume between 27 and 125 cm, or a surface area between 54 and 150 cm", then unless there is a systematic influence on how they make the boxes (e.g. they form a group, and choose one particular method of making boxes), about 56% of the boxes will be less than 4&nbsp;cm - and it will get very close to this amount very quickly.  So, for large N, any deviation from this basically indicates the makers of the boxes were "systematic" in how the boxes were made.
 
The fundamental hypothesis of [[statistical physics]], that any two microstates of a system with the same total energy are equally probable at [[Thermodynamic equilibrium|equilibrium]], is in a sense an example of the principle of indifference. However, when the microstates are described by continuous variables (such as positions and momenta), an additional physical basis is needed in order to explain under ''which'' parameterization the probability density will be uniform.  [[Liouville's theorem (Hamiltonian)|Liouville's theorem]] justifies the use of canonically conjugate variables, such as positions and their conjugate momenta.
 
==History of the principle of indifference==
 
The original writers on probability, primarily [[Jacob Bernoulli]] and [[Pierre Simon Laplace]], considered the principle of indifference to be intuitively obvious and did not even bother to give it a name.  Laplace wrote:
 
:The theory of chance consists in reducing all the events of the same kind to a certain number of cases equally possible, that is to say, to such as we may be equally undecided about in regard to their existence, and in determining the number of cases favorable to the event whose probability is sought. The ratio of this number to that of all the cases possible is the measure of this probability, which is thus simply a fraction whose numerator is the number of favorable cases and whose denominator is the number of all the cases possible.
 
These earlier writers, Laplace in particular, naively generalized the principle of indifference to the case of continuous parameters, giving the so-called "uniform prior probability distribution", a function which is constant over all real numbers. He used this function to express a complete lack of knowledge as to the value of a parameter.  According to Stigler (page 135), Laplace's assumption of uniform prior probabilities was not a meta-physical assumption.  It was an implicit assumption made for the ease of analysis.
 
The '''principle of insufficient reason''' was its first name, given to it by later writers, possibly as a play on [[Gottfried Leibniz|Leibniz]]'s [[principle of sufficient reason]]. These later writers ([[George Boole]], [[John Venn]], and others) objected to the use of the uniform prior for two reasons. The first reason is that the constant function is not normalizable, and thus is not a proper probability distribution. The second reason is its inapplicability to continuous variables, as described above. (However, these paradoxical issues can be resolved. In the first case, a constant, or any more general finite polynomial, ''is'' normalizable within any finite range: the range [0,1] is all that matters here. Alternatively, the function may be modified to be zero outside that range, as with a [[continuous uniform distribution]]. In the second case, there is no ambiguity provided the problem is "well-posed", so that no unwarranted assumptions can be made, or have to be made, thereby fixing the appropriate prior [[probability density function]] or prior [[moment generating function]] (with variables fixed appropriately) to be used for the probability itself. See the [[Bertrand paradox (probability)]] for an analogous case.)
 
The "Principle of insufficient reason" was renamed the "Principle of Indifference" by the economist {{harvs|first=John Maynard|last=Keynes|authorlink=John Maynard Keynes|year=1921|txt}}, who was careful to note that it applies only when there is no knowledge indicating unequal probabilities.
 
Attempts to put the notion on firmer [[philosophy|philosophical]] ground have generally begun with the concept of [[equipossibility]] and progressed from it to [[equiprobability]].
 
The principle of indifference can be given a deeper logical justification by noting that equivalent states of knowledge should be assigned equivalent epistemic probabilities.  This argument was propounded by [[E.T. Jaynes]]:  it leads to two generalizations, namely the [[principle of transformation groups]] as in the [[Jeffreys prior]], and the [[principle of maximum entropy]].
 
More generally, one speaks of [[non-informative prior]]s.
 
{{No footnotes|date=July 2010}}
 
== References ==
 
{{reflist}}
* Edwin Thompson Jaynes. ''Probability Theory: The Logic of Science''. [[Cambridge University Press]], 2003. ISBN 0-521-59271-2.
* Persi Diaconis and Joseph B. Keller. "Fair Dice". ''The American Mathematical Monthly'', 96(4):337-339, 1989. ''(Discussion of dice that are fair "by symmetry" and "by continuity".)''
*{{citation|last=Keynes|first=John Maynard|authorlink=John Maynard Keynes|contribution=Chapter IV. The Principle of Indifference|title=A Treatise on Probability|volume=4|publisher=Macmillan and Co.|year=1921|url=http://books.google.com/books?id=YmCvAAAAIAAJ&pg=PA41&dq=%22principle+of+indifference%22#v=onepage&q=%22principle%20of%20indifference%22&f=false|pages=41–64}}.
*{{cite book | last = Stigler | first = Stephen M.
| title = The history of statistics : the measurement of uncertainty before 1900
| publisher = Belknap Press of Harvard University Press
| location = Cambridge, Mass | year = 1986 | isbn = 0-674-40340-1}}
 
[[Category:Probability theory]]
[[Category:Statistical principles]]

Revision as of 06:50, 11 August 2014

Property Brokers and Team Managers – Looking for good Actual Estate Agency to join or contemplating which is the Finest Property Agency to join in Singapore? Join Leon Low in OrangeTee Singapore! In OrangeTee, we've much more attractive commission structure than before, enrichment courses, 10 most vital components to hitch OrangeTee and 1 motive to join Leon Low and his Workforce. 1. Conducive working environment

Via PropNex International, we continually construct on our fame in the international property enviornment. Click here for more of our abroad initiatives. Instances have modified. We don't see those unlawful hawkers anymore. Instead, nicely dressed property brokers were seen reaching out to people visiting the market in the morning. Real estate can be a lonely enterprise and it is straightforward to really feel demoralised, especially when there are no enquiries despite your greatest effort in advertising your shopper's property. That is the place having the fitting assist from fellow associates is essential. Our firm offers administration services for condominiums and apartments. With a crew of qualified folks, we assist to make your estate a nicer place to stay in. HDB Flat for Hire 2 Rooms

Achievers are all the time the first to check new technologies & providers that can help them enhance their sales. When property guru first began, many brokers didn't consider in it until they began listening to other colleagues getting unbelievable outcomes. Most brokers needs to see proof first, before they dare to take the first step in attempting. These are often the late comers or late adopters. There is a purpose why top achievers are heading the wave or heading the best way. Just because they try new properties in singapore issues ahead of others. The rest just observe after!

Firstly, a Fraudulent Misrepresentation is one that is made knowingly by the Representor that it was false or if it was made without belief in its fact or made recklessly without concerning whether or not it is true or false. For instance estate agent A told the potential consumers that the tenure of a landed property they are considering is freehold when it is really one with a ninety nine-yr leasehold! A is responsible of constructing a fraudulent misrepresentation if he is aware of that the tenure is the truth is a ninety nine-yr leasehold instead of it being freehold or he didn't consider that the tenure of the house was freehold or he had made the assertion with out caring whether or not the tenure of the topic property is in fact freehold.

I such as you to be, am a brand new projects specialist. You've got the conception that new tasks personnel should be showflat certain. Should you're eager, let me train you the right way to master the entire show flats island vast as a substitute of getting to stay just at 1 place. Is that attainable you may ask, well, I've achieved it in 6 months, you can too. Which company is well-recognized and is actually dedicated for developing rookie within the industry in venture sales market with success? Can a rookie join the company's core group from day one? I wish to propose a third class, which I have been grooming my agents in the direction of, and that is as a Huttons agent, you will be able to market and have knowledge of ALL Huttons projects, and if essential, projects exterior of Huttons as properly.

GPS has assembled a high workforce of personnel who are additionally well-known figures in the native actual property scene to pioneer this up-and-coming organization. At GPS Alliance, WE LEAD THE WAY! Many people have asked me how I managed to earn S$114,000 from my sales job (my third job) at age 24. The reply is easy. After graduation from NUS with a Historical past diploma, my first job was in actual estate. Within the ultimate part of this series, I interview one of the top agents in ERA Horizon Group and share with you the secrets to his success! Learn it RIGHT HERE

Notice that the application must be submitted by the appointed Key Government Officer (KEO) such as the CEO, COO, or MD. Once the KEO has submitted the mandatory paperwork and assuming all documents are in order, an email notification shall be sent stating that the applying is permitted. No hardcopy of the license might be issued. A delicate-copy could be downloaded and printed by logging into the CEA website. It takes roughly four-6 weeks to course of an utility. Template:TOCright CW may stand for:

Radio

  • Continuous wave, a method of carrier wave modulation used for sending Morse code

Arts

Companies

Television

Military

Places

Publications

Religion and philosophy

Sciences

Software

Sports

Direction

Template:Disambiguation