List of trigonometric identities: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Michael Hardy
 
en>Monkbot
Line 1: Line 1:
<br><br>Even the most costly, effectively-created knives lose their sharpness swiftly when employed frequently. If you cherished this article and you simply would like to obtain more info with regards to [http://www.thebestkitchenknivesreviews.com/best-chef-knives-reviews/ Iron Chef Knives Reviews] generously visit the web site. In totality, there are a lot of superior kitchen knife brands to pick out from that consist of Rachael Ray, Forschner Victorinox, Henckels, Chicago Cutlery, Worldwide, Wusthof, Ginsu and quite a few far more. Furthermore, a quantity of chefs are fond of sharpening their knives prior to they start to cook as this will surely help to keep their knives to remain sharpHowever some moms grind their knives only when these knives come to be dull. Unacceptable knives do not cut as expected.<br><br>Some examples include things like steak knives for cutting steak at the table, oyster knives for prying open oyster shells, and lettuce knives produced of plastic to avert the reduce edges of lettuce from turning brown. Kitchen knives need to always be washed by hand with warm soapy water.  Store knives in a knife block, away from other utensils to keep away from damaging the bladeSantoku knives can be employed to slice , chop, dice and mince.<br><br>These knives are lightcompletely work well with vegetables, but you could will need a additional substantial knife for heavy meat cutting. Getting stated that - as a budget set of knives, these are a excellent location to startAbout $27 for the full set is really a very good deal and I can absolutely advocate these as a first knife set. A single terrific function on these knives is the black nonslip rubber handles which cushion hands and offers a very good gripNicely, the Wusthof knives just blew my thoughts.<br><br>With straight-edge knives getting extra prone to dulling if made use of regularly, the sharpener that is incorporated in a kitchen knife set makes a gourmet knife set comprehensive. A gourmet knife set is what a cooking guru would need, and a related set viewed as a gourmet set qualifies as a fundamental kitchen knife set to a particular person who goes out and cooks significantly less. Wusthof Classic three Piece BBQ Set NEW Time left: $99.95. Acquire It Now.<br><br>This Classic Ikon knife is completely balanced for effortless cutting and options Wusthof PEtec - Precision Edge Technology - for an very easily maintained razor-sharp edge that retains its cutting performance twice as lengthy as other knivesQualified chefs have been consulted in creating the ergonomic, revolutionary black manage that is made for comfort and control, and is produced of a seamless, synthetic material for a hygienic grip.  Knives should by no means be placed in the dishwasher.<br><br>Even though the spiral slicer that has been just not too long ago generated by iPerfect Kitchen was really controversial, the truth is that this offer is non-toxic and pretty danger-no cost to make use of, given the truth that the veggies are accessible in direct contact just with the stainless steel Japanese bladesIPerfect Kitchen Envy Spiral Slicer promises give the most effective kitchen gadgets and 100% guarantee consumer sastifaction to all consumers. And, I do not invest in knives at estate sales any longer.
{{expert-subject|mathematics|date=January 2011}}
 
In mathematics, the '''Pocklington&ndash;Lehmer primality test''' is a [[primality test]] devised by [[Henry Cabourn Pocklington]] and [[Derrick Henry Lehmer]] to decide whether a given number <math>N</math> is prime. The output of the test is a proof that the number is prime or that primality could not be established.
 
==Pocklington criterion==
The test relies on the '''Pocklington Theorem''' (Pocklington criterion) which is formulated as follows:
 
Let <math> N > 1</math> be an integer, and suppose there exist numbers ''a'' and ''q'' such that
 
'''(1)'''  ''q'' is prime, <math>q \vert N - 1</math> and <math>q > \sqrt{N}- 1</math>
 
'''(2)''' <math>a^{N-1} \equiv 1 \pmod{N}</math>
 
'''(3)'''  <math>\gcd{(a^{(N-1)/q} - 1 , N)} = 1</math>
 
Then <math>N</math> is prime.<ref name="koblitz">Koblitz, Neal, '''A Course in Number Theory and Cryptography''', 2nd Ed, Springer,1994</ref>
 
===Proof of this theorem===
 
Suppose ''N'' is not prime.  This means there must be a prime ''p'', where <math>p \le \sqrt{N}</math> that divides ''N''.
 
Therefore, <math> q > p - 1 </math> which implies <math>\gcd{(q , p - 1)} = 1</math>.
 
Thus there must exist an integer ''u'' with the property that
 
'''(4)''' <math> uq\equiv 1 \pmod{p - 1}</math>
 
This implies:
  <math>1 \equiv a^{N-1}\pmod{p}</math>, by '''(2)''' since <math>p \vert N </math>
 
  <math>    \equiv (a^{N-1})^{u}\equiv a^{u(N-1)} \equiv a^{uq((N-1)/q)}\equiv (a^{uq})^{(N-1)/q}\pmod{p}</math>,
 
  <math>    \equiv a^{(N-1)/q}\pmod{p}</math>, by '''(4)''' and [[Fermat's little theorem]]
 
This shows the <math>\gcd()</math> of '''(3)''' is actually <math>p</math>, not <math>1</math>; a contradiction.<ref name="koblitz" />
 
The test is simple once the theorem above is established.  Given ''N'', seek to find suitable ''a'' and ''q''.  If they can be obtained, then ''N'' is prime. Moreover, ''a'' and ''q'' are the certificate of primality.  They can be quickly verified to satisfy the conditions of the theorem, confirming ''N'' as prime.
 
A problem which arises is the ability to find a suitable ''q'', that must satisfy (1)–(3) and be provably prime.  It is even quite possible that such a ''q'' does not exist.  This is a large probability, indeed only 57.8% of the odd primes, ''N'', <math>N \le  10, 000</math> have such a ''q''.  To find ''a'' is not nearly so difficult. If ''N'' is prime, and a suitable ''q'' is found, each choice of ''a'' where <math>1 \le a < N</math> will satisfy <math>a^{N-1} \equiv 1\pmod{N}</math>, and so will satisfy (2) as long as ord(''a'') does not divide <math>(N - 1)/q</math>Thus a randomly chosen ''a'' is likely to work. If ''a'' is a generator mod ''N'' its order is ''N-1'' and so the method is guaranteed to work for this choice.<ref>http://www.mast.queensu.ca/~math418/m418oh/m418og26.pdf</ref>
 
==Generalized Pocklington method==
A generalized version of Pocklington's theorem covers more primes ''N''.
 
'''Corollary:'''
 
Let ''N''&nbsp;&minus;&nbsp;1 factor as ''N''&nbsp;&minus;&nbsp;1 =&nbsp;''AB'', where ''A'' and ''B'' are relatively prime, <math> A > \sqrt{N}</math>  and the factorization of ''A'' is known.
 
If for every prime factor ''p'' of ''A'' there exists an integer <math>a_p</math> so that
 
: <math>a^{N - 1}_p\equiv 1 \pmod{N}</math>
 
and <math>\gcd{(a^{(N - 1)/p}_p - 1, N)} = 1</math> then ''N'' is primeThe reverse implication also holds: If ''N'' is prime then every prime factor of ''A'' can be written in the above manner.<ref>Blake, Ian F., Seroussi, Gadiel, Smart, Nigel Paul, '''Elliptic Curves in Cryptography''', Cambridge University Press, 1999</ref>
 
'''Proof of Corollary:'''
Let ''p'' be a prime dividing ''A'' and let <math>p^e</math> be the maximum power of ''p'' dividing ''A''.
Let ''v'' be a prime factor of ''N''. For the <math>a_p</math> from the corollary set
<math>b \equiv a^{(N-1)/p^e}_p \pmod{v}</math>. This means
<math>b^{p^e} \equiv a^{N-1}_p \equiv 1 \pmod{v}</math>  and because of <math>\gcd{(a^{(N-1)/p}_p - 1, N)} = 1</math> also
<math>b^{p^{e-1}} \equiv a^{(N-1)/p}_p \not\equiv 1 \pmod{v}</math>.
 
This means that the order of <math>b \pmod{v}</math> is <math>p^e</math>
 
Thus, <math>p^e \vert (v - 1) </math>.  The same observation holds for each prime power factor <math>p^e</math> of ''A'',
which implies <math>A \vert (v - 1)</math>.
 
Specifically, this means <math>v > A \ge \sqrt{n}.</math>
 
If ''N'' were composite, it would necessarily have a prime factor which is less than or equal to <math>\sqrt{N}</math>It has been shown that there is no such factor, which implies that ''N'' is prime.
 
To see the converse choose <math>a_p</math> a generator of the integers modulo ''p''.<ref>Washington, Lawrence C., '''Elliptic Curves: Number Theory and Cryptography''', Chapman & Hall/CRC, 2003</ref>
 
==The test==
 
The Pocklington–Lehmer primality test follows directly from this corollary.  We must first partially factor ''N''&nbsp;&minus;&nbsp;1 into ''A'' and ''B''Then we must find an <math>a_p</math> for every prime factor ''p'' of ''A'', which fulfills the conditions of the corollary. If such <math>a_p</math>'s can be found, the Corollary implies that ''N'' is prime.
 
According to Koblitz, <math>a_p</math> = 2 often works.<ref name="koblitz" />
 
==Example==
 
: <math>N = 11351</math>
: <math>N - 1 = 2\cdot 5^2\cdot 227</math>
 
Choose <math>A = 227\cdot5^2</math>, which means <math>B = 2 </math>
 
Now it is clear that <math>\gcd{(A,B)} = 1</math>  and <math>A > \sqrt{N}</math>.
 
Next find an <math>a_p</math> for each prime factor ''p'' of ''A''.
E.g. choose <math>a_5=2</math>.
 
: <math>a^{N-1}_p \equiv 2^{11350} \equiv 1 \pmod{11351}</math>.
 
: <math>\gcd{(a^{(N-1)/p}_p - 1, N)} = \gcd{(2^{2\cdot 5\cdot 227} - 1, 11351)} = 1.</math>
 
So <math>a_5=2</math> satisfies the necessary conditions. Choose <math>a_{227} = 7</math>.
 
: <math>a^{N-1}_p \equiv 7^{11350}  \equiv 1 \pmod{11351}</math>
 
and
 
: <math>\gcd{(a^{(N-1)/p}_p - 1, N)} = \gcd(7^{2\cdot 25} - 1, 11351) = 1.</math>
 
So both <math>a_p</math>'s work and thus ''N'' is prime.
 
We have chosen a small prime for calculation purposes but in practice when we start factoring ''A'' we will get factors that themselves must be checked for primality.  It is not a proof of primality until we know our factors of ''A'' are prime as well.  If we get a factor of ''A'' where primality is not certain, the test must be performed on this factor as wellThis gives rise to a so-called down-run procedure, where the primality of a number is evaluated via the primality of a series of smaller numbers.
 
In our case, we can say with certainty that 2, 5, and 227 are prime, and thus we have proved our result.  The certificate in our case is the list of <math>a_p</math>'s, which can quickly be checked in the corollary.
 
If our example had given rise to a down-run sequence, the certificate would be more complicated.  It would first consist of our initial round of <math>a_p</math>'s which correspond to the 'prime' factors of ''A''; Next, for the factor(s) of ''A'' of which primality was uncertain, we would have more <math>a_p</math>'s, and so on for factors of these factors until we reach factors of which primality is certain.  This can continue for many layers if the initial prime is large, but the important thing to note, is that a simple certificate can be produced, containing at each level the prime to be tested, and the corresponding <math>a_p</math>'s, which can easily be verified.  If at any level we cannot find <math>a_p</math>'s then we cannot say that ''N'' is prime.
 
The biggest difficulty with this test is the necessity of discovering prime factors of ''N - 1'', in essence, factoring ''N''&nbsp;&minus;&nbsp;1.  In practice this could be extremely difficultFinding <math>a_p</math>'s is a less difficult problem.<ref>{{cite book|authors=Roberto Avanzi, Henri Cohen, Christophe Doche, Gerhard Frey, Tanja Lange, Kim Nguyen, Frederik Vercauteren|title=Handbook of Elliptic and Hyperelliptic Curve Cryptography|publisher=Chapman & Hall/CRC|location=Boca Raton|year=2005|url=http://www.hyperelliptic.org/HEHCC}}</ref>
 
== References ==
<!--- See [[Wikipedia:Footnotes]] on how to create references using <ref></ref> tags which will then appear here automatically -->
{{Reflist}}
 
== External links ==
{{Number-theoretic algorithms}}
<!--- Categories --->
 
{{DEFAULTSORT:Pocklington Primality Test}}
[[Category:Primality tests]]

Revision as of 10:59, 25 January 2014

Template:Expert-subject

In mathematics, the Pocklington–Lehmer primality test is a primality test devised by Henry Cabourn Pocklington and Derrick Henry Lehmer to decide whether a given number is prime. The output of the test is a proof that the number is prime or that primality could not be established.

Pocklington criterion

The test relies on the Pocklington Theorem (Pocklington criterion) which is formulated as follows:

Let be an integer, and suppose there exist numbers a and q such that

(1) q is prime, and

(2)

(3)

Then is prime.[1]

Proof of this theorem

Suppose N is not prime. This means there must be a prime p, where that divides N.

Therefore, which implies .

Thus there must exist an integer u with the property that

(4)

This implies:

  , by (2) since 
 
  ,
 
  , by (4) and Fermat's little theorem

This shows the of (3) is actually , not ; a contradiction.[1]

The test is simple once the theorem above is established. Given N, seek to find suitable a and q. If they can be obtained, then N is prime. Moreover, a and q are the certificate of primality. They can be quickly verified to satisfy the conditions of the theorem, confirming N as prime.

A problem which arises is the ability to find a suitable q, that must satisfy (1)–(3) and be provably prime. It is even quite possible that such a q does not exist. This is a large probability, indeed only 57.8% of the odd primes, N, have such a q. To find a is not nearly so difficult. If N is prime, and a suitable q is found, each choice of a where will satisfy , and so will satisfy (2) as long as ord(a) does not divide . Thus a randomly chosen a is likely to work. If a is a generator mod N its order is N-1 and so the method is guaranteed to work for this choice.[2]

Generalized Pocklington method

A generalized version of Pocklington's theorem covers more primes N.

Corollary:

Let N − 1 factor as N − 1 = AB, where A and B are relatively prime, and the factorization of A is known.

If for every prime factor p of A there exists an integer so that

and then N is prime. The reverse implication also holds: If N is prime then every prime factor of A can be written in the above manner.[3]

Proof of Corollary: Let p be a prime dividing A and let be the maximum power of p dividing A. Let v be a prime factor of N. For the from the corollary set . This means and because of also .

This means that the order of is

Thus, . The same observation holds for each prime power factor of A, which implies .

Specifically, this means

If N were composite, it would necessarily have a prime factor which is less than or equal to . It has been shown that there is no such factor, which implies that N is prime.

To see the converse choose a generator of the integers modulo p.[4]

The test

The Pocklington–Lehmer primality test follows directly from this corollary. We must first partially factor N − 1 into A and B. Then we must find an for every prime factor p of A, which fulfills the conditions of the corollary. If such 's can be found, the Corollary implies that N is prime.

According to Koblitz, = 2 often works.[1]

Example

Choose , which means

Now it is clear that and .

Next find an for each prime factor p of A. E.g. choose .

.

So satisfies the necessary conditions. Choose .

and

So both 's work and thus N is prime.

We have chosen a small prime for calculation purposes but in practice when we start factoring A we will get factors that themselves must be checked for primality. It is not a proof of primality until we know our factors of A are prime as well. If we get a factor of A where primality is not certain, the test must be performed on this factor as well. This gives rise to a so-called down-run procedure, where the primality of a number is evaluated via the primality of a series of smaller numbers.

In our case, we can say with certainty that 2, 5, and 227 are prime, and thus we have proved our result. The certificate in our case is the list of 's, which can quickly be checked in the corollary.

If our example had given rise to a down-run sequence, the certificate would be more complicated. It would first consist of our initial round of 's which correspond to the 'prime' factors of A; Next, for the factor(s) of A of which primality was uncertain, we would have more 's, and so on for factors of these factors until we reach factors of which primality is certain. This can continue for many layers if the initial prime is large, but the important thing to note, is that a simple certificate can be produced, containing at each level the prime to be tested, and the corresponding 's, which can easily be verified. If at any level we cannot find 's then we cannot say that N is prime.

The biggest difficulty with this test is the necessity of discovering prime factors of N - 1, in essence, factoring N − 1. In practice this could be extremely difficult. Finding 's is a less difficult problem.[5]

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

Template:Number-theoretic algorithms

  1. 1.0 1.1 1.2 Koblitz, Neal, A Course in Number Theory and Cryptography, 2nd Ed, Springer,1994
  2. http://www.mast.queensu.ca/~math418/m418oh/m418og26.pdf
  3. Blake, Ian F., Seroussi, Gadiel, Smart, Nigel Paul, Elliptic Curves in Cryptography, Cambridge University Press, 1999
  4. Washington, Lawrence C., Elliptic Curves: Number Theory and Cryptography, Chapman & Hall/CRC, 2003
  5. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534