Focus (linguistics): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>OnesimusUnbound
→‎Responses: Manually reverted vandalism. See https://en.wikipedia.org/w/index.php?title=Focus_(linguistics)&diff=prev&oldid=578952150
en>Dylanvt
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
'''Screw theory''' refers to the algebra and calculus of pairs of  vectors, such as forces and moments and angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies.<ref>[http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0680993 F. M. Dimentberg, ''The Screw Calculus and Its Applications in Mechanics'', (Foreign Technology Division translation FTD-HT-23-1632-67) 1965]</ref><ref>A.T. Yang (1974) "Calculus of Screws" in ''Basic Questions of Design Theory'', William R. Spillers, editor, Elsevier, pages 266 to 281.</ref>  The mathematical framework was developed by Sir [[Robert Stawell Ball]] in 1876 for application in [[kinematics]] and [[statics]] of [[mechanism (engineering)|mechanism]]s (rigid body mechanics).<ref>[http://books.google.com/books?id=Qu9IAAAAMAAJ&ots=wwsm6pBaJa&dq=The%20theory%20of%20screws%3A%20A%20study%20in%20the%20dynamics%20of%20a%20rigid%20body&pg=PR3#v=onepage&q&f=false R. S. Ball, ''The Theory of Screws: A study in the dynamics of a rigid body'', Hodges, Foster & Co., 1876]</ref>


Screw theory provides a [[mathematical]] [[formulation]] for the [[geometry]] of lines which is central to [[rigid body dynamics]], where lines form the screw axes of spatial movement and the lines of action of forces.  The pair of vectors that form the [[Plücker coordinates]] of a line define a unit screw, and general screws are obtained by multiplication by a pair of real numbers and addition of [[Euclidean vector|vectors]].<ref>{{cite book|title=The theory of screws: A study in the dynamics of a rigid body|url=http://books.google.com/books?id=Qu9IAAAAMAAJ&dq=The%20theory%20of%20screws%3A%20A%20study%20in%20the%20dynamics%20of%20a%20rigid%20body&pg=PR3#v=onepage&q&f=false|author=Ball, R. S.|publisher=Hodges, Foster|year=1876}}</ref>


An important result of screw theory is that geometric calculations for points using vectors have parallel geometric calculations for lines obtained by replacing vectors with screws. This is termed the ''transfer principle.''<ref name="McCarthy">[http://books.google.co.uk/books?id=jv9mQyjRIw4C&printsec=frontcover&dq=geometric+design+of+linkages&hl=en&ei=3L_5TcvZGaHV0QG2wMiDAw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDMQ6AEwAA#v=onepage&q&f=false J. M. McCarthy and G. S. Soh, ''Geometric Design of Linkages''. 2nd Edition, Springer 2010]</ref>
Någon fäders dagen  förut någon grabb  har en bra föda och  lockton möjligheter kan bestå förhållandevis lätt stäv att alstra om ni bor inom New England. Steakhouse "och  primära casino golv han definitivt bestämmer att det här befinner sig någon bruten de allra  gyckelspel dag presenter han helst hade. Blott  farsa  bilen  sin aptit hans fröjd huvudprydnad samt kör honom mot nyligen omarbetat och nu innerligt populära "Twin floden CasinoLincoln R. ni kommer existera gladlynt ni befinner sig med  på resan. någonstans  "Fred och Steve's.<br><br>gör ej villig något fason gällande  tidrymd framstöt till poker område, lirar ni mot andra . Detta  de avta genomsnitt från . Försåvitt tillåts ingen insättning gratifikation  online casino ni framförallt tillåts dollar ut maximal avans gällande $a hundra något sånt. Men villig Poker det icke absolut dito. Pokerrummet vill du att gå miste samtliga dina dollar. Pokerrummen rabatt oftast futtig fullkomligt från potten, om potten uppnått ett pytteliten . nDet precis fager kända att Poker likväl befinner sig spelande ändock oerhört bekymmersam itu skicklighet. bonus du utföra avsevärt större krukor det mer poker utrymmet kommer att generera åstadkommer jätte- mer om underhåller villig deras bord samt spela flera sker.<br><br>Ett briljant fäders dag gåva mot din farsa, är försåvitt han gillar att köpa, kvällsmat kungen "Fred Steve's Steakhouse" villig andra nivån det nya Twin floden kasinot. Att tillhandahålla för en hop annorlunda anspråk såsom ingått åtskilliga privata problem att anlägga använda villig webbplatsen restauranger. Fred och Steve's Steakhouse. köpman förlägger tillsammans varandra trodde utökade gaming centrum dom tog likaså in kantin behov från beskyddare. Härförleden avslutade artikeln i Lincoln, RI befinner sig  oerhört dramatisk kungen line kasino begär bytt namn Lincoln åt Twin floden.<br><br>Ni värderar din privateness kvar allting annat? Online bingo  producerar någon individuella användarnamn alternativt när [http://Www.Google.com/search?q=registrerar+dej&btnI=lucky registrerar dej] på ett ny bingo plats  benämning visar gällande displayen istället stäv din riktiga 1. Om icke vill klyva ditt användarnamn, förstår ingen när du spelarinnerligt spenderar- hur avsevärt vinner! Förakta nyfikna vänner/familj/grannar?<br><br>strategier  nämns  inlägget utvecklade för att doktrin dej att fixa besegra. Det destinationsort från spelteori är att hjälpa bättra ditt lek och fördröja mängden itu misstag . Resten är    erfarenhet öde. Vilka resultat optimala intäkter behöver kunskap att fixa en . Det  sättet att betrygga  slutresultat inom din ynnest med stäv avans micro inskränka lek, vårt nämnd av senare. Du kan märka karl utför det igenom att helt  lockton idé. Det icke att undervisa det konceptet. Ni behöver definitivt tillverka  handlag att till större inskränka TV-spel. Det finns ingen trolsk solution  teknik som kommer att inlära att stora. Resultatet av detta lockton allvarligt beroende av massa faktorer, inklusive din labb  antagonist.<br><br>Litteratur såsom vänder sig till nybörjare spelarna (även erkänt som "rutor") kommer att innehava dåliga linjer pro favoriter bra avtryck för hörntänder. Stäv situation, ifall  satsar främst på underdogs, därefter öppna  konto hos ett bookmaker  "nyanser" deras linjer till favoriter.<br><br>Paris Hilton, Kraftlös Damon, Brad Kuk skulle all vara närvarande för någon  kurs Casino. När nya casino s öppnar  Las Vegas, preparera sig  flyga ett fullständig del kändisar. Dom lokala nyheterna  Las Vegas ropar att flyga vem det är att dom kan upptäcka  Las Vegas.<br><br>Det medför att  plikt sätta in hop deg för att ringa deras  gratifikation nDet finns  föremål ni  grubbla på när du registrerar dej stäv någon pur casinobonus. Alla bonusar befinner sig annorlunda och det  angeläget att känna till de exakta uppgifterna ifall . erbjuder ett verkligt högre toppen extra men någon låg %. Avsyna evigt att ni  "termer & villkor".<br><br>Det indikerar att  kan njuta av att  din gunstling pokerspel video direkt från bekvämligheter inom ditt eget byggnad när  helst, varenda  helst! Agera poker online befinner sig lysande roligt.<br><br>Det vore dålig ifall en av dessa miljonärer skulle bestå ni! Än kunde dessa förhoppningar faktiskt ejakulera absolut  du hur att söka tio affiliate-program online. Hur flera gånger har  hört att medborgare  blivit miljonärer genast itu endast begagna kraften Nätet?<br><br>Själv skulle avstyra saken där slot maskiner därför att de oralsex dina klöver torka, greppa sig till TV-spel som roulette, blackjack och poker. Äger  odds att faktiskt strosa avsaknad tillsammans avans av casino! Kostnadsfri framgångsrika nya casino belöning motion #3 - känner till vilka videospel    förrätta !<br><br>Försåvitt råkar befinna ett dotterföretag till någon välrenommerade webbplats, så har ni någon avsevärt  chans att motta ytterligare uppdrag  mycket mer pengar pro  jag. Detta borde vara    befinner sig  kända stäv sin fantastiska casino spel  befinner sig  online casino  erbjuder högkvalitativa lösningar du bliva en Jackpotjoy affiliate? faktorn  kräver generellt  spörja dig personligen ifall en affiliateprogram är vad  kommer att lite  programmet. första beståndsdelen från ett casino 2014 affiliate plan befinner sig att ställa in vilken fotografi såsom kasinot har.<br><br>If you loved this write-up and you would such as to obtain additional information relating to Vi listar alla senaste samt bästa nya casinon 2014; [http://foodandme.in/groups/four-tips-to-start-building-a-nya-online-casino-pa-natet-you-always-wanted/ besøke], kindly visit the website.
 
Screw theory has become an important tool in robot mechanics,<ref>[http://books.google.com/books?id=c6yz7f_jpqsC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false R. Featherstone, ''Robot Dynamics Algorithms'', Springer, 1987. ]</ref><ref>[http://books.google.com/books?id=UjWbvqWaf6gC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false R. Featherstone, ''Robot Dynamics Algorithms'', Springer, 2008.]</ref> mechanical design, [[computational geometry]] and [[multibody dynamics]].
This is in part because of the relationship between screws and [[dual quaternion]]s which have been used to interpolate [[rigid-body motion]]s.<ref>J. M. Selig, "Rational Interpolation of Rigid Body Motions," Advances in the Theory of Control, Signals and Systems with Physical Modeling, Lecture Notes in Control and Information Sciences, 2011 Volume 407/2011 213-224, {{doi|10.1007/978-3-642-16135-3_18}} Springer.</ref> Based on screw theory, an efficient approach has also been developed for the type synthesis of parallel mechanisms (parallel manipulators or parallel robots) <ref>[http://books.google.co.uk/books?id=II9_FbbpkL0C&printsec=frontcover&dq=type+synthesis+of+parallel+mechanisms&hl=en&ei=AwDVTr63Hsyg8gORlsScAg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDgQ6AEwAA#v=onepage&q=type%20synthesis%20of%20parallel%20mechanisms&f=false X. Kong, ''Type Synthesis of Parallel Mechanisms'', Springer, 2007.] </ref>   
 
Fundamental theorems include [[Poinsot's theorem]] ([[Louis Poinsot]], 1806) and [[Chasles' theorem]] ([[Michel Chasles]], 1832). Other prominent contributors include [[Julius Plücker]], [[William Kingdon Clifford|W. K. Clifford]], [[Theodore Minas'yevich Dimetberg|F. M. Dimentberg]], [[Kenneth H. Hunt]], J. R. Phillips.<ref>[[William Kingdon Clifford]] (1873), "Preliminary Sketch of Biquaternions", Paper XX, ''Mathematical Papers'', p.&nbsp;381.</ref>
 
<!--this is discussed under "screw axis"
[[Euler's rotation theorem]] states that any rotation can be described as a rotation about a single axis by a given angle. In general, this is a unique representation (with the exception of zero rotation having an undefined axis and rotation of 180° having an ambiguity in axis direction corresponding to [[gimbal lock]]). Screw theory extends this notion to include translation.
-->
[[Image:pure screw.svg|thumb|The pitch of a pure screw relates rotation about an axis to translation along that axis.]]
 
== Basic concepts ==
A spatial displacement of a rigid body can be defined by a rotation about a line and a translation along the same line, called a screw displacementThis is known as [[Chasles' theorem]]The six parameters that define a screw displacement are the four independent components of the Plücker vector that defines the screw axis, together with the rotation angle about and linear slide along this line, and form a pair of vectors called a '''screw'''. For comparison, the six parameters that define a spatial displacement can also be given by three [[Euler Angles]] that define the rotation and the three components of the translation vector.
 
=== Screw ===
A screw is a six-dimensional vector constructed from a pair of three dimensional vectors, such as forces and torques and linear and angular velocity, that arise in the study of spatial rigid body movementThe components of the screw define the Plücker coordinates of a line in space and the magnitudes of the vector along the line and moment about this line.
 
=== Wrench ===
The force and torque vectors that arise in applying Newton's laws to a rigid body can be assembled into a screw called a '''wrench'''A force has a point of application and a line of action, therefore it defines the [[Plücker coordinates]] of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line in space and is an infinite pitch screwThe ratio of these two magnitudes defines the pitch of the screw.
 
=== Twist ===
A '''twist''' represents the velocity of a rigid body as an angular velocity around an axis and a linear velocity along this axisAll points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis. Thus, the helicoidal field formed by the velocity vectors in a moving rigid body flattens out the further the points are radially from the twist axis.
 
The points in a body undergoing a constant screw motion trace helices in the fixed frame.  If this screw motion has zero pitch then the trajectories trace circles, and the movement is a pure rotation. If the screw motion has infinite pitch then the trajectories are all straight lines in the same direction.
 
== Algebra of screws ==
Let a ''screw'' be an ordered pair
:<math> \mathsf{S}=(\mathbf{S}, \mathbf{V}), </math>
where '''S''' and '''V''' are three dimensional real vectors.  The sum and difference of these ordered pairs are computed componentwise.  Screws are often called ''dual vectors''. 
 
Now, introduce the ordered pair of real numbers â=(a, b) called ''dual scalars''.  Let the addition and subtraction of these numbers be componentwise, and define multiplication as
:<math> \hat{a}\hat{c}=(a, b)(c, d) = (ac, ad+bc). \!</math>
The multiplication of a screw S=('''S''', '''V''') by the dual scalar â=(a, b) is computed componentwise to be,
: <math> \hat{a}\mathsf{S} = (a, b)(\mathbf{S}, \mathbf{V}) = (a \mathbf{S}, a \mathbf{V} +b \mathbf{S}).\!</math>
 
Finally, introduce the dot and cross products of screws by the formulas:
: <math> \mathsf{S}\cdot \mathsf{T} = (\mathbf{S}, \mathbf{V})\cdot (\mathbf{T}, \mathbf{W}) = (\mathbf{S}\cdot\mathbf{T},\,\, \mathbf{S}\cdot\mathbf{W} +\mathbf{V}\cdot\mathbf{T}), </math>
and 
: <math> \mathsf{S}\times \mathsf{T} = (\mathbf{S}, \mathbf{V})\times (\mathbf{T}, \mathbf{W}) = (\mathbf{S}\times \mathbf{T},\,\, \mathbf{S}\times \mathbf{W} +\mathbf{V}\times \mathbf{T}).</math>
The dot and cross products of screws satisfy the identities of vector algebra, and allow computations that directly parallel computations in the algebra of vectors.
 
Let the dual scalar ẑ=(φ, d) define a ''dual angle'', then the infinite series definitions of sine and cosine yield the relations
: <math> \sin \hat{z} = \sin\phi + d \cos\phi, \,\,\, \cos\hat{z} = \cos\phi - d \sin\phi.\!</math>
In general, the function of a dual variable is defined to be f(ẑ)=(f(φ), df′(φ)), where f′(φ) is the derivative of f(φ).
 
These definitions allow the following results:
* Unit screws are Plücker coordinates of a line and satisfy the relation
:: <math> |\mathsf{S}|=\sqrt{\mathsf{S}\cdot \mathsf{S}} =1; </math>
*  Let ẑ=(φ, d) be the dual angle, where φ is the angle between the axes of S and T around their common normal, and d is the distance between these axes along the common normal, then
:: <math> \mathsf{S}\cdot \mathsf{T}=|\mathsf{S}||\mathsf{T}|\cos\hat{z}; </math>
* Let N be the unit screw that defines the common normal to the axes of S and T, and ẑ=(φ, d) is the dual angle between these axes, then
:: <math> \mathsf{S}\times \mathsf{T} = |\mathsf{S}||\mathsf{T}| \sin\hat{z} \mathsf{N}. </math>
 
== Wrench ==
A common example of a screw is the ''wrench'' associated with a force acting on a rigid bodyLet ''P'' be the point of application of the force '''F''' and let '''P''' be the vector locating this point in a fixed frameThe wrench W=('''F''', '''P'''×'''F''') is a screw. The resultant force and moment obtained from all the forces '''F'''<sub>i</sub> i=1,...,n, acting on a rigid body is simply the sum of the individual wrenches W<sub>i</sub>, that is
:<math> \mathsf{R} = \sum_{i=1}^n \mathsf{W}_i = \sum_{i=1}^n (\mathbf{F}_i, \mathbf{P}_i\times\mathbf{F}_i). </math>
 
Notice that the case of two equal but opposite forces '''F''' and '''-F''' acting at points '''A''' and '''B''' respectively, yields the resultant
:<math> \mathsf{R}=(\mathbf{F}-\mathbf{F}, \mathbf{A}\times\mathbf{F} - \mathbf{B}\times\mathbf{F}) = (0, (\mathbf{A}-\mathbf{B})\times\mathbf{F}).</math>
This shows that screws of the form
:<math>\mathsf{M}=(0, \mathbf{M}),</math>
can be interpreted as pure moments.
 
== Twist ==
In order to define the ''twist'' of a rigid body, we must consider its movement defined by the parameterized set of spatial displacements, D(t)=([A(f)],'''d'''(f)), where [A] is a rotation matrix and '''d''' is a translation vector. This causes a point '''p''' that is fixed in moving body to trace a curve '''P'''(t) in the fixed frame given by,
:<math>
\mathbf{P}(t) = [A(t)]\mathbf{p} + \mathbf{d}(t).
</math>
 
The velocity of '''P''' is
:<math>
\mathbf{V}_P(t) = \left[\frac{dA(t)}{dt}\right]\mathbf{p} + \mathbf{v}(t),
</math>
where '''v''' is velocity of the origin of the moving frame, that is d'''d'''/dt. Now substitute '''p'''= [A<sup>T</sup>]('''P'''-'''d''') into this equation to obtain,
:<math>
\mathbf{V}_P(t) = [\Omega]\mathbf{P} + \mathbf{v} - [\Omega]\mathbf{d}\quad\mbox{or}\quad\mathbf{V}_P(t) = \mathbf{\omega}\times\mathbf{P} + \mathbf{v} + \mathbf{d}\times\mathbf{\omega},
</math>
where [Ω]=[dA/dt][A<sup>T</sup>] is the angular velocity matrix and ω is the angular velocity vector.
 
The screw
:<math> \mathsf{T}=(\vec{\omega}, \mathbf{v} + \mathbf{d}\times \vec{\omega}),\!</math>
is the ''twist'' of the moving bodyThe vector '''V'''='''v''' + '''d'''×ω is the velocity of the point in the body that corresponds with the origin of the fixed frame.
 
There are two important special cases: (i) when '''d''' is constant, that is '''v'''=0then the twist is a pure rotation about a line, then the twist is
:<math>\mathsf{L}=(\omega, \mathbf{d}\times\omega),</math>
and (ii) when [Ω]=0, that is the body does not rotate but only slides in the direction '''v''', then the twist is a pure slide given by
:<math> \mathsf{T}=(0, \mathbf{v}).</math>
 
=== Revolute joints ===
For a [[revolute joint]], let the axis of rotation pass through the point '''q''' and be directed along the vector ω, then the twist for the joint is given by,
:<math> \xi = \begin{Bmatrix} \omega \\ q \times \omega \end{Bmatrix}.</math>
 
=== Prismatic joints ===
For a [[prismatic joint]], let the vector '''v''' pointing define the direction of the slide, then the twist for the joint is given by,
:<math> \xi = \begin{Bmatrix} 0\\v \end{Bmatrix}.</math>
 
== Coordinate transformation of screws ==
The coordinate transformations for screws are easily understood by beginning with the coordinate transformations of the Plücker vector of line, which in turn are obtained from the transformations of the coordinate of points on the line.
 
Let the displacement of a body be defined by D=([A], '''d'''), where [A] is the rotation matrix and '''d''' is the translation vector. Consider the line in the body defined by the two points '''p''' and '''q''', which has the [[Plücker coordinates]],
:<math> \mathsf{q}=(\mathbf{q}-\mathbf{p}, \mathbf{p}\times\mathbf{q}),</math>
then in the fixed frame we have the transformed point coordinates '''P'''=[A]'''p'''+'''d''' and '''Q'''=[A]'''q'''+'''d''', which yield.
:<math>\mathsf{Q}=(\mathbf{Q}-\mathbf{P}, \mathbf{P}\times\mathbf{Q}) = ([A](\mathbf{q}-\mathbf{p}), [A](\mathbf{p}\times\mathbf{q}) + \mathbf{d}\times[A](\mathbf{q}-\mathbf{p}))</math>
 
Thus, a spatial displacement defines a transformation for Plücker coordinates of lines given by
:<math>
\begin{Bmatrix} \mathbf{Q}-\mathbf{P} \\ \mathbf{P}\times\mathbf{Q} \end{Bmatrix}
= \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix}
\begin{Bmatrix} \mathbf{q}-\mathbf{p} \\ \mathbf{p}\times\mathbf{q} \end{Bmatrix}.
</math>
The matrix [D] is the skew symmetric matrix that performs the cross product operation, that is [D]'''y'''='''d'''×'''y'''.
 
The 6&times;6 matrix constructed from obtained from the spatial displacement D=([A], '''d''') can be assembled into the dual matrix
:<math>[\hat{A}] =([A], [DA]),</math>
which operates on a screw s=('''s'''.'''v''') to obtain,
:<math>\mathsf{S} = [\hat{A}]\mathsf{s}, \quad (\mathbf{S}, \mathbf{V}) = ([A], [DA])(\mathbf{s}, \mathbf{v}) = ([A]\mathbf{s}, [A]\mathbf{v}+[DA]\mathbf{s}).</math>
 
The dual matrix [Â]=([A], [DA]) has determinant 1 and is called a ''dual orthogonal matrix''.
<!--- problems with this section: needs work
== Screw theory and robotics ==
The angular velocity and velocity of the end-effector of a robot are assembled into the pair of vectors called a twistThe twists used in robotics are transposed versions of the twists used in screw theory. This transposition facilitates the calculation of virtual work.  
=== Twists ===
[[Image:Velocity twist.jpg|thumb|A change in the reference point of the moving frame changes the twist.]]
The twist includes the velocity of the reference point of the moving frameTo change the reference point in the moving from A to B, one must account for the rotation of the bodyIntroduce the notation:
*<math>\vec v_A</math> denotes the linear velocity at point A
*<math>\vec v_B</math> denotes the linear velocity at point B
*<math>\vec \omega</math> denotes the angular velocity of the rigid body
*<math>[\vec r_{AB}]_\times </math> denotes the 3×3 [[Cross product#Conversion_to_matrix_multiplication|cross product matrix]]
 
In screw notation velocity twists transform with a 6x6 transformation matrix
:<math>\hat{v_A} = \begin{Bmatrix} \vec v_A\\ \vec \omega \end{Bmatrix} = \begin{bmatrix} 1 & [\vec r_{AB}]_\times \\ 0 & 1 \end{bmatrix}\begin{Bmatrix} \vec v_B \\ \vec \omega \end{Bmatrix}. </math>
Notice that in this formulation the velocity of the reference point is identified as the first vector of the twist, while the angular velocity is the second vector.
 
=== Wrenches ===
[[Image:Force wrench.jpg|thumb|A change in the reference point of the moving frame changes the wrench.]]
Similarly the equipolent moments expressed at each location within a [[rigid body]] define a helical field called the force wrench. To move representation from point B to point A, introduce the notation:
*<math>\vec \tau_A</math> denotes the [[equipollent]] (link: [http://en.wikibooks.org/wiki/Statics/Resultants_of_Force_Systems_(contents) wikibooks.org] ) moment at point A
*<math>\vec \tau_B</math> denotes the [[equipollent]] (link: [http://en.wikibooks.org/wiki/Statics/Resultants_of_Force_Systems_(contents) wikibooks.org] ) moment at point B
*<math>\vec F</math> denotes the total force applied to the rigid body
*<math>[\vec r_{AB}]_\times </math> denotes the 3×3 [[Cross product#Conversion_to_matrix_multiplication|cross product matrix]]
 
In screw notation force wrenches transform with a 6x6 transformation matrix,
:<math>\hat {\tau}_A = \begin{Bmatrix} \vec F \\ \vec {\tau}_A \end{Bmatrix} = \begin{bmatrix} 1 & 0 \\ [ \vec r_{AB} ]_\times & 1 \end{bmatrix} \begin{Bmatrix} \vec F \\ \vec {\tau}_B \end{Bmatrix} . </math>
-->
 
== Twists as elements of a Lie algebra ==
Consider the movement of a rigid body defined by the parameterized 4x4 homogeneous transform,
:<math> \textbf{P}(t)=[T(t)]\textbf{p} =
\begin{Bmatrix} \textbf{P} \\ 1\end{Bmatrix}=\begin{bmatrix} A(t) & \textbf{d}(t) \\ 0 & 1\end{bmatrix}
\begin{Bmatrix} \textbf{p} \\ 1\end{Bmatrix}.</math>
This notation does not distinguish between '''P''' = (X, Y, Z, 1), and '''P''' = (X, Y, Z), which is hopefully clear in context.
 
The velocity of this movement is defined by computing the velocity of the trajectories of the points in the body,
:<math> \textbf{V}_P = [\dot{T}(t)]\textbf{p} =
\begin{Bmatrix} \textbf{V}_P \\ 0\end{Bmatrix} = \begin{bmatrix} \dot{A}(t) & \dot{\textbf{d}}(t) \\ 0 & 0 \end{bmatrix}
\begin{Bmatrix} \textbf{p} \\ 1\end{Bmatrix}.</math>
The dot denotes the derivative with respect to time, and because '''p''' is constant its derivative is zero.
 
Substitute the inverse transform for '''p''' into the velocity equation to obtain the velocity of ''P'' by operating on its trajectory '''P'''(t), that is
:<math>\textbf{V}_P=[\dot{T}(t)][T(t)]^{-1}\textbf{P}(t) = [S]\textbf{P},</math>
where
:<math>[S] = \begin{bmatrix} \Omega & -\Omega\textbf{d} + \dot{\textbf{d}} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \Omega & \mathbf{d}\times\omega+ \mathbf{v} \\ 0 & 0 \end{bmatrix}.</math>
Recall that [Ω] is the angular velocity matrix. The matrix [S] is an element of the Lie algebra se(3) of the Lie group SE(3) of homogeneous transformsThe components of [S] are the components of the twist screw, and for this reason [S] is also often called a twist.  
 
From the definition of the matrix [S], we can formulate the ordinary differential equation,
:<math>[\dot{T}(t)] = [S][T(t)],</math>
and ask for the movement [T(t)] that has a constant twist matrix [S]. The solution is the matrix exponential
:<math>[T(t)] = e^{[S]t}.</math>
 
This formulation can be generalized such that given an initial configuration g(0) in SE(n), and a twist ξ in se(n), the homogeneous transformation to a new location and orientation can be computed with the formula,
:<math> g\left(\theta\right) = \exp(\xi\theta) g\left(0\right),</math>
where θ represents the parameters of the transformation.
 
==Screws by reflection==
In [[transformation geometry]], the elemental concept of transformation is the [[reflection (mathematics)]]. In planar transformations a translation is obtained by reflection in parallel lines, and rotation is obtained by reflection in a pair of intersecting lines. To produce a screw transformation from similar concepts one must use planes in [[space]]: the parallel planes must be perpendicular to the [[screw axis]], which is the line of intersection of the intersecting planes that generate the rotation of the screw. Thus four reflections in planes effect a screw transformation. The tradition of [[inversive geometry]] borrows some of the ideas of [[projective geometry]] and provides a language of transformation that does not depend on [[analytic geometry]].
==Homography==
The combination of a translation with a rotation effected by a screw transformation can be illustrated with the [[exponential mapping]]. This idea in transformation geometry was advanced by [[Sophus Lie]] more than a century ago. Even earlier, [[William Rowan Hamilton]] displayed the [[versor]] form of unit quaternions as exp(''a r'')= cos ''a'' + ''r'' sin ''a''. The idea is also in [[Euler's formula]] parametrizing the [[unit circle]] in the [[complex plane]].
 
Since &epsilon;<sup>2</sup> = 0 for dual numbers, exp(''a'' &epsilon;) = 1 + ''a'' &epsilon;, all other terms of the exponential series vanishing.
 
Let ''F'' = {1 + ''a'' &epsilon; : ''a'' ∈ '''H'''},  &epsilon;<sup>2</sup> = 0.
Note that ''F'' is [[invariant (mathematics)#Invariant set|stable]] under the [[quaternions and spatial rotation|rotation]] ''q'' → ''p'' <sup>&minus;1</sup> ''q p'' and under the translation
(1 + ''a'' &epsilon;)(1 + ''b'' &epsilon;) = 1 + (''a'' + ''b'') &epsilon; for any vector quaternions ''a'' and ''b''.
''F'' is a [[flat (geometry)|3-flat]] in the eight-dimensional space of [[dual quaternion]]s. This 3-flat F represents [[space]], and the [[homography]] constructed, [[restriction of a function|restricted]] to ''F'', is a screw displacement of space.
 
Let ''a'' be half the angle of the desired turn about axis ''r'', and ''b r'' half the displacement on the [[screw axis]]. Then form ''z'' = exp((''a'' + ''b'' &epsilon;) ''r'' ) and z* = exp((''a'' &minus; ''b'' &epsilon;) ''r'' ). Now the homography is
:<math>U(q,1)\begin{pmatrix}z & 0 \\ 0 & z^* \end{pmatrix} = U(q z , z^*) \thicksim U((z^*)^{-1} q z , 1).</math>
The inverse for z* is <math>1/(\exp(ar - br \epsilon)) = </math>
:<math>(e^{ar} e^{-br \epsilon} )^{-1} = </math>
:<math> e^{br \epsilon} e^{-ar},</math>
so, the homography sends ''q'' to
:<math>(e^{b \epsilon} e^{-ar}) q (e^{ar} e^{bs\epsilon}) = e^{b \epsilon} (e^{-ar} q e^{ar} )e^{bs\epsilon}) = e^{2b \epsilon} (e^{-ar} q e^{ar}).</math>
Now for any quaternion vector ''p'', p* = &minus;''p'', let ''q'' = 1 + ''p'' &epsilon; ∈ ''F'' where the required rotation and translation are effected.
 
[[William Kingdon Clifford]] initiated the use of dual quaternions for [[kinematics]], followed by [[Eduard Study]] in his ''Geometrie der Dynamen''. However, the point of view of Sophus Lie has recurred.<ref>Xiangke Wang, Dapeng Han, Changbin Yu, and Zhiqiang Zheng (2012) "The geometric structure of unit dual quaternions with application in kinematic control", ''Journal of Mathematical Analysis and Applications'' 389(2):1352 to 64</ref>
In 1940, [[Julian Coolidge]] described the use of dual quaternions for screw displacements on page 261 of ''A History of Geometrical Methods''. He notes the 1885 contribution of Arthur Buchheim.<ref>Arthur Buchheim (1885) [http://www.jstor.org/stable/2369176 "A Memoir on biquaternions"], [[American Journal of Mathematics]] 7(4):293 to 326 from [[Jstor]] early content</ref> Coolidge based his description simply on the tools Hamilton had used for real quaternions.
 
Evidently the [[group of units]] of the [[ring (mathematics)|ring]] of dual quaternions is a [[Lie group]]. A subgroup has [[Lie algebra]] generated by the parameters ''a r'' and ''b s'', where ''a'', ''b'' ∈ '''R''', and ''r'', ''s'' ∈ '''H'''. These six parameters generate a subgroup of the units, the unit sphere. Of course it includes ''F'' and the [[3-sphere]] of [[versor]]s.
 
==Work of forces acting on a rigid body==
Consider the set of forces '''F'''<sub>1</sub>, '''F'''<sub>2</sub> ... '''F'''<sub>n</sub> act on the points '''X'''<sub>1</sub>, '''X'''<sub>2</sub> ... '''X'''<sub>n</sub> in a rigid body. The trajectories of '''X'''<sub>i</sub>, i=1,...,n  are defined by the movement of the rigid body with rotation [A(t)] and the translation '''d'''(t) of a reference point in the body, given by
:<math> \mathbf{X}_i(t)= [A(t)]\mathbf{x}_i + \mathbf{d}(t)\quad i=1,\ldots, n, </math>
where '''x'''<sub>i</sub> are coordinates in the moving body.
 
The velocity of each point '''X'''<sub>i</sub> is
:<math>\mathbf{V}_i = \vec{\omega}\times(\mathbf{X}_i-\mathbf{d}) + \mathbf{v},</math>
where '''ω''' is the angular velocity vector and '''v''' is the derivative of '''d'''(t).
 
The work by the forces over the displacement δ'''r'''<sub>i</sub>='''v'''<sub>i</sub>δt of each point is given by
:<math> \delta W = \mathbf{F}_1\cdot\mathbf{V}_1\delta t+\mathbf{F}_2\cdot\mathbf{V}_2\delta t + \ldots + \mathbf{F}_n\cdot\mathbf{V}_n\delta t.</math>
Define the velocities of each point in terms of the twist of the moving body to obtain
:<math> \delta W =  \sum_{i=1}^n \mathbf{F}_i\cdot (\vec{\omega}\times(\mathbf{X}_i -\mathbf{d}) + \mathbf{v})\delta t. </math>
 
Expand this equation and collect coefficients of ω and '''v''' to obtain
:<math> \delta W =  (\sum_{i=1}^n \mathbf{F}_i)\cdot\mathbf{d}\times \vec{\omega}\delta t+ (\sum_{i=1}^n \mathbf{F}_i)\cdot\mathbf{v}\delta t + (\sum_{i=1}^n \mathbf{X}_i \times\mathbf{F}_i)\cdot\vec{\omega}\delta t  =  (\sum_{i=1}^n \mathbf{F}_i)\cdot(\mathbf{v}+\mathbf{d}\times \vec{\omega}) \delta t + (\sum_{i=1}^n \mathbf{X}_i \times\mathbf{F}_i)\cdot\vec{\omega}\delta t .</math>
Introduce the twist of the moving body and the wrench acting on it given by
:<math> \mathsf{T} = (\vec{\omega},\mathbf{d}\times \vec{\omega} +\mathbf{v})=(\mathbf{T},\mathbf{T}^\circ),\quad\mathsf{W} = (\sum_{i=1}^n \mathbf{F}_i, \sum_{i=1}^n \mathbf{X}_i \times\mathbf{F}_i)=(\mathbf{W},\mathbf{W}^\circ), </math>
then work takes the form
:<math>\delta W = (\mathbf{W}\cdot\mathbf{T}^\circ +  \mathbf{W}^\circ \cdot\mathbf{T})\delta t.</math>
 
The 6x6 matrix [Π] is used to simply the calculation of work using screws, so that
:<math>\delta W = (\mathbf{W}\cdot\mathbf{T}^\circ +  \mathbf{W}^\circ \cdot\mathbf{T})\delta t = \mathsf{W}[\Pi]\mathsf{T}\delta t,</math>
where
:<math> [\Pi] =\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix},</math>
and [I] is the 3x3 identity matrix.
===Reciprocal screws===
If the virtual work of a wrench on a twist is zero, then the forces and torque of the wrench are constraint forces relative to the twist.  The wrench and twist are said to be ''reciprocal,'' that is
if
:<math>\delta W =\mathsf{W}[\Pi]\mathsf{T}\delta t = 0,</math>
then the screws W and T are reciprocal.
 
===Twists in robotics===
In the study of robotic systems the components of the twist are often transposed to eliminate the need for the 6x6 matrix [Π]  in the calculation of work.<ref name="McCarthy"/>  In this case the twist is defined to be
:<math>\check{\mathsf{T}} =  (\mathbf{d}\times \vec{\omega} +\mathbf{v},\vec{\omega}),</math>
so the calculation of work takes the form
:<math>\delta W =\mathsf{W}\cdot\check{\mathsf{T}}\delta t.</math>
 
In this case, if
:<math>\delta W =\mathsf{W}\cdot\check{\mathsf{T}}\delta t= 0,</math>
then the wrench W is reciprocal to the twist T.
 
==See also==
*[[Screw axis]]
*[[Newton–Euler equations|Newton-Euler Equations]] uses screws to describe rigid body motions and loading.
 
==References==
{{Reflist}}
<!-- included in references---*{{cite book|title=The theory of screws: A study in the dynamics of a rigid body|url=http://books.google.com/books?id=Qu9IAAAAMAAJ&dq=The%20theory%20of%20screws%3A%20A%20study%20in%20the%20dynamics%20of%20a%20rigid%20body&pg=PR3#v=onepage&q&f=false|author=Ball, R. S.|publisher=Hodges, Foster|year=1876}}
*[[William Kingdon Clifford]] (1873), "Preliminary Sketch of Biquaternions", Paper XX, ''Mathematical Papers'', p.&nbsp;381.
* A.T. Yang (1974) "Calculus of Screws" in ''Basic Questions of Design Theory'', William R. Spillers, editor, [[Elsevier]], pages 266 to 281.
*{{cite book|title=Rigid Body Dynamics Algorithms|author=Roy Featherstone|publisher=Springer|year=1987|isbn=0-89838-230-0}}
-->
 
== External links ==
* Joe Rooney [http://oro.open.ac.uk/8455/01/chapter4(020507).pdf William Kingdon Clifford], Department of Design and Innovation, the Open University, London.
* Ravi Banavar notes on [http://www.eeci-institute.eu/pdf/M5-textes/M5_slides4.pdf Robotics, Geometry and Control]
* [http://neo-classical-physics.info/uploads/3/0/6/5/3065888/klein_-_screws.pdf Klein, F., "On Sir Robert Ball's Theory of Screws," trans. by D. H. Delphenich]
 
[[Category:Mechanical engineering]]
[[Category:Mechanics]]
[[Category:Rigid bodies]]
[[Category:Kinematics]]
 
[[de:Schraubentheorie]]
[[fr:Torseur]]

Latest revision as of 04:19, 16 October 2014


Någon fäders dagen förut någon grabb har en bra föda och lockton möjligheter kan bestå förhållandevis lätt stäv att alstra om ni bor inom New England. Steakhouse "och primära casino golv han definitivt bestämmer att det här befinner sig någon bruten de allra gyckelspel dag presenter han helst hade. Blott farsa bilen sin aptit hans fröjd huvudprydnad samt kör honom mot nyligen omarbetat och nu innerligt populära "Twin floden Casino" Lincoln R. ni kommer existera gladlynt ni befinner sig med på resan. någonstans "Fred och Steve's.

gör ej villig något fason gällande tidrymd framstöt till poker område, lirar ni mot andra . Detta de avta genomsnitt från . Försåvitt tillåts ingen insättning gratifikation online casino ni framförallt tillåts dollar ut maximal avans gällande $a hundra något sånt. Men villig Poker det icke absolut dito. Pokerrummet vill du att gå miste samtliga dina dollar. Pokerrummen rabatt oftast futtig fullkomligt från potten, om potten uppnått ett pytteliten . nDet precis fager kända att Poker likväl befinner sig spelande ändock oerhört bekymmersam itu skicklighet. bonus du utföra avsevärt större krukor det mer poker utrymmet kommer att generera åstadkommer jätte- mer om underhåller villig deras bord samt spela flera sker.

Ett briljant fäders dag gåva mot din farsa, är försåvitt han gillar att köpa, kvällsmat kungen "Fred Steve's Steakhouse" villig andra nivån det nya Twin floden kasinot. Att tillhandahålla för en hop annorlunda anspråk såsom ingått åtskilliga privata problem att anlägga använda villig webbplatsen restauranger. Fred och Steve's Steakhouse. köpman förlägger tillsammans varandra trodde utökade gaming centrum dom tog likaså in kantin behov från beskyddare. Härförleden avslutade artikeln i Lincoln, RI befinner sig oerhört dramatisk kungen line kasino begär bytt namn Lincoln åt Twin floden.

Ni värderar din privateness kvar allting annat? Online bingo producerar någon individuella användarnamn alternativt när registrerar dej på ett ny bingo plats benämning visar gällande displayen istället stäv din riktiga 1. Om icke vill klyva ditt användarnamn, förstår ingen när du spelar, innerligt spenderar- hur avsevärt vinner! Förakta nyfikna vänner/familj/grannar?

strategier nämns inlägget utvecklade för att doktrin dej att fixa besegra. Det destinationsort från spelteori är att hjälpa bättra ditt lek och fördröja mängden itu misstag . Resten är erfarenhet öde. Vilka resultat optimala intäkter behöver kunskap att fixa en . Det sättet att betrygga slutresultat inom din ynnest med stäv avans micro inskränka lek, vårt nämnd av senare. Du kan märka karl utför det igenom att helt lockton idé. Det icke att undervisa det konceptet. Ni behöver definitivt tillverka handlag att till större inskränka TV-spel. Det finns ingen trolsk solution teknik som kommer att inlära att stora. Resultatet av detta lockton allvarligt beroende av massa faktorer, inklusive din labb antagonist.

Litteratur såsom vänder sig till nybörjare spelarna (även erkänt som "rutor") kommer att innehava dåliga linjer pro favoriter bra avtryck för hörntänder. Stäv situation, ifall satsar främst på underdogs, därefter öppna konto hos ett bookmaker "nyanser" deras linjer till favoriter.

Paris Hilton, Kraftlös Damon, Brad Kuk skulle all vara närvarande för någon kurs Casino. När nya casino s öppnar Las Vegas, preparera sig flyga ett fullständig del kändisar. Dom lokala nyheterna Las Vegas ropar att flyga vem det är att dom kan upptäcka Las Vegas.

Det medför att plikt sätta in hop deg för att ringa deras gratifikation nDet finns föremål ni grubbla på när du registrerar dej stäv någon pur casinobonus. Alla bonusar befinner sig annorlunda och det angeläget att känna till de exakta uppgifterna ifall . erbjuder ett verkligt högre toppen extra men någon låg %. Avsyna evigt att ni "termer & villkor".

Det indikerar att kan njuta av att din gunstling pokerspel video direkt från bekvämligheter inom ditt eget byggnad när helst, varenda helst! Agera poker online befinner sig lysande roligt.

Det vore dålig ifall en av dessa miljonärer skulle bestå ni! Än kunde dessa förhoppningar faktiskt ejakulera absolut du hur att söka tio affiliate-program online. Hur flera gånger har hört att medborgare blivit miljonärer genast itu endast begagna kraften Nätet?

Själv skulle avstyra saken där slot maskiner därför att de oralsex dina klöver torka, greppa sig till TV-spel som roulette, blackjack och poker. Äger odds att faktiskt strosa avsaknad tillsammans avans av casino! Kostnadsfri framgångsrika nya casino belöning motion #3 - känner till vilka videospel förrätta !

Försåvitt råkar befinna ett dotterföretag till någon välrenommerade webbplats, så har ni någon avsevärt chans att motta ytterligare uppdrag mycket mer pengar pro jag. Detta borde vara befinner sig kända stäv sin fantastiska casino spel befinner sig online casino erbjuder högkvalitativa lösningar du bliva en Jackpotjoy affiliate? faktorn kräver generellt spörja dig personligen ifall en affiliateprogram är vad kommer att lite programmet. första beståndsdelen från ett casino 2014 affiliate plan befinner sig att ställa in vilken fotografi såsom kasinot har.

If you loved this write-up and you would such as to obtain additional information relating to Vi listar alla senaste samt bästa nya casinon 2014; besøke, kindly visit the website.