Floquet theory: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Policron
m Added an external link (EOM).
en>Mohsenfo
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[mathematics]], '''Church encoding''' is a means of representing data and operators in the [[lambda calculus]]. The data and operators form a mathematical structure which is [[embedding|embedded]] in the lambda calculus.  The '''Church numerals''' are a representation of the natural numbers using lambda notation. The method is named for [[Alonzo Church]], who first encoded data in the lambda calculus this way.
Wilber Berryhill is what his wife enjoys to contact him and he totally enjoys this name. To perform lacross is 1 of the things she loves most. For many years she's been working as a travel agent. My spouse and I reside in Mississippi and I love each working day living right here.<br><br>My blog email psychic readings ([http://www.aseandate.com/index.php?m=member_profile&p=profile&id=13352970 visit my homepage])
 
Terms that are usually considered primitive in other notations (such as integers, booleans, pairs, lists, and tagged unions) are mapped to [[higher-order function]]s under Church encoding.  The [[Church-Turing thesis]] asserts that any computable operator (and its operands) can be represented under Church encoding.  In the [[Lambda calculus|untyped lambda calculus]] the only primitive data type is the function.  The Church-Turing thesis is that lambda calculus is [[Turing complete]].
 
The Church encoding is not intended as a practical implementation of primitive data types.  Its use is to show that other primitives data types are not required to represent any calculation.  The completeness is representational.  Additional functions are needed to translate the representation into common data types, for display to people.  It is not possible in general to decide if two functions are extrinsically equal due to the [[Lambda calculus#Undecidability of equivalence|undecidability of equivalence]] from [[Church's theorem]].  The translation may apply the function in some way to retrieve the value it represents, or look up its value as a literal lambda term.
 
==Church numerals==
 
Church numerals are the representations of [[natural number]]s under Church encoding.  The [[higher-order function]] that represents natural number <math>n</math> is a function that maps any function <math>f</math> to its ''n''-fold [[function composition|composition]]. In simpler terms, the "value" of the numeral is equivalent to the number of times the function encapsulates its argument.
 
: <math>f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n\text{ times}}.\,</math>
 
All Church numerals are functions that take two parameters.  Church numerals '''0''', '''1''', '''2''', ..., are defined as follows in the [[lambda calculus]]:
 
Then starting with zero, being not applying the function, then one being applying the function, ...
 
{| class="wikitable"
|-
! Number !! Function definition !! Lambda expression
|-
| 0 || <math>0\ f\ x = x </math> || <math>0 = \lambda f.\lambda x.x </math>
|-
| 1 || <math>1\ f\ x = f\ x </math> || <math>1 = \lambda f.\lambda x.f\ x </math>
|-
| 2 || <math>2\ f\ x = f\ (f\ x) </math> || <math>2 = \lambda f.\lambda x.f\ (f\ x) </math>
|-
| 3 || <math>3\ f\ x = f\ (f\ (f\ x)) </math> || <math>3 = \lambda f.\lambda x.f\ (f\ (f\ x)) </math>
|-
| colspan='3'  align='center' style='border-left: 1px solid white; border-right: 1px solid white' | ...
|-
| n || <math>n\ f\ x = f^n\ x </math> || <math>n = \lambda f.\lambda x.f^n\ x </math>
|}
 
The Church numeral '''3''' represents the action of applying any given function three times to a value.  The supplied function is first applied to a supplied parameter and then successively to its own result.  The end result is not the numeral 3 (unless the supplied parameter happens to be 0 and the function is a successor function).  The function itself, and not its end result, is the Church numeral '''3'''.  The Church numeral '''3''' means simply to do anything three times.  It is an [[Ostensive definition|ostensive]] demonstration of what is meant by "three times".
 
===Calculation with Church numerals===
 
[[Arithmetic]] operations on numbers may be represented by functions on Church numerals.  These functions may be defined in [[Lambda calculus|lambda calculus]], or implemented in most functional programming languages  (see [[Lambda lifting#Conversion without lifting|converting lambda expressions to functions]]).
 
The addition function <math>\operatorname{plus}(m, n)= m+n</math> uses the identity <math>f^{(m+n)}(x)=f^m(f^n(x))</math>.
 
: <math>\operatorname{plus} \equiv \lambda m.\lambda n.\lambda f.\lambda x. m\ f\ (n\ f\ x)</math>
 
The successor function <math>\operatorname{succ}(n)=n+1</math> is [[Beta reduction#.CE.B2-reduction|&beta;-equivalent]] to <math>(\operatorname{plus}\ 1)</math>.
 
: <math>\operatorname{succ} \equiv \lambda n.\lambda f.\lambda x. f\ (n\ f\ x)</math>
 
The multiplication function <math>\operatorname{mult}(m, n) = m*n</math> uses the identity <math>f^{(m*n)}(x) = (f^n)^m(x)</math>.
 
: <math>\operatorname{mult} \equiv \lambda m.\lambda n.\lambda f. m\ (n\ f)</math>
 
The exponentiation function <math>\operatorname{exp}(m, n) = m^n</math> is given by the definition of a Church numerals; <math>n\ f\ x = f^n\ x </math>.  In the definition substitute <math> f \to m, x \to f</math> to get <math>n\ m\ f = m^n\ f </math> and,
: <math>\operatorname{exp}\ m\ n = m^n = n\ m </math>
which gives the lambda expression,
: <math>\operatorname{exp} \equiv \lambda m.\lambda n. n\ m</math>
 
The <math>\operatorname{pred}(n)</math> function is more difficult to understand.
 
: <math>\operatorname{pred} \equiv \lambda n.\lambda f.\lambda x. n\ (\lambda g.\lambda h. h\ (g\ f))\ (\lambda u. x)\ (\lambda u. u)</math>
 
A Church numeral applies a function ''n'' times.  The predecessor function must return a function that applies it's parameter ''n - 1'' times.  This is achieved by building a container around ''f'' and ''x'', which is initialized in a way that omits the application of the function the first time.  See [[#Derivation of predecessor function|predecessor]] for a more detailed explanation.
 
The subtraction function can be written based on the predecessor function.
 
: <math>\operatorname{minus} \equiv  \lambda m.\lambda n. (n \operatorname{pred})\ m</math>
 
=== Table of functions on Church numerals ===
 
{| class="wikitable"
|-
! Function !! Algebra !! Identity !! Function definition
! colspan="2" | Lambda expressions
|-
| [[Successor function|Successor]] || <math>n + 1</math> || <math>f^{n+1}\ x = f (f^n x) </math> ||  <math>\operatorname{succ}\ n\ f\ x = f\ (n\ f\ x) </math> || <math>\lambda n.\lambda f.\lambda x.f\ (n\ f\ x) </math> || ...
|-
| [[Addition]] || <math>m + n</math> || <math>f^{m+n}\ x = f^m (f^n x) </math> || <math>\operatorname{plus}\ m\ n\ f\ x = m\ f\ (n\ f\ x) </math> || <math> \lambda m.\lambda n.\lambda f.\lambda x.m\ f\ (n\ f\ x) </math> || <math>\lambda m.\lambda n.n \operatorname{succ} m</math>
|-
| [[Multiplication]] || <math>m * n </math> || <math> f^{m*n}\ x = (f^m)^n\ x </math> ||<math>\operatorname{multiply}\ m\ n\ f\ x = m\ (n\ f) \ x </math> || <math>\lambda m.\lambda n.\lambda f.\lambda x.m\ (n\ f) \ x </math> || <math>\lambda m.\lambda n.\lambda f.m\ (n\ f) </math>
|-
| [[Exponentiation]] || <math>m^n </math> || <math> n\ m\ f = m^n\ f </math><ref name="Church numeral definition">This formula is the definition of a Church numeral n with f -> m, x -> f.</ref> ||<math>\operatorname{exp} \ m\ n\ f\ x = (n\ m)\ f\ x </math> || <math> \lambda m.\lambda n.\lambda f.\lambda x.(n\ m)\ f\ x </math> || <math> \lambda m.\lambda n.n\ m </math>
|-
| [[#Derivation of predecessor function|Predecessor]]* || <math>n - 1</math> || <math>\operatorname{inc}^n \operatorname{con} = \operatorname{val} (f^{n-1} x) </math> || <math>\operatorname{pred}</math> ...
| colspan="2" |
<math>\lambda n.\lambda f.\lambda x.n\ (\lambda g.\lambda h.h\ (g\ f))\ (\lambda u.x)\ (\lambda u.u) </math>
|-
| [[Subtraction]]* || <math> m - n </math> || <math>f^{m-n}\ x = (f^{-1})^n (f^{m} x)</math> || <math>\operatorname{minus}\ m\ n = (n \operatorname{pred})\ m</math>  || ... ||  <math>\lambda m.\lambda n.n \operatorname{pred} m</math>
|}
 
<nowiki>* </nowiki>Note that in the Church encoding,
* <math> \operatorname{pred}(0) = 0 </math>
* <math> m < n \to m - n = 0 </math>
 
===Translation with other representations===
Most real-world languages have support for machine-native integers; the ''church'' and ''unchurch'' functions convert between nonnegative integers and their corresponding church numerals. The functions are given here in [[Haskell (programming language)|Haskell]], where the <code>\</code> corresponds to the λ of Lambda calculus. Implementations in other languages are similar.
 
<syntaxhighlight lang="haskell">
 
type Church a = (a -> a) -> (a -> a)
 
church :: Integer -> Church Integer
church 0 = \f -> \x -> x
church n = \f -> \x -> f (church (n-1) f x)
 
unchurch :: Church Integer -> Integer
unchurch n = n (\x -> x + 1) 0
</syntaxhighlight>
 
==Church Booleans==
 
''Church Booleans'' are the Church encoding of the Boolean values ''true'' and ''false.'' Some programming languages use these as an implementation model for Boolean arithmetic; examples are [[Smalltalk]] and [[Pico (programming language)|Pico]].
 
Boolean logic may be considered as a choice.  The Church encoding of ''true'' and ''false'' are functions of two parameters;
* ''true'' chooses the first parameter.
* ''false'' chooses the second parameter.
 
The two definitions are known as Church Booleans;
: <math>\operatorname{true} \equiv \lambda a.\lambda b.a</math>
: <math>\operatorname{false} \equiv \lambda a.\lambda b.b</math>
 
This definition allows predicates (i.e. functions returning [[Truth value|logical values]]) to directly act as if-clauses.  A function returning a Boolean, which is then applied to two parameters, returns either the first or the second parameter;
: <math>\operatorname{predicate}\ x\ \operatorname{then-clause}\ \operatorname{else-clause} </math>
evaluates to ''then-clause'' if ''predicate'' x evaluates to ''true'', and to ''else-clause'' if ''predicate'' x evaluates to ''false''.
 
Because ''true'' and ''false'' choose the first or second parameter they may be combined to provide logic operators,
: <math>\operatorname{and} = \lambda p.\lambda q.p\ q\ p</math>
: <math>\operatorname{or} = \lambda p.\lambda q.p\ p\ q</math>
: <math>\operatorname{not}_1 = \lambda p.\lambda a.\lambda b.p\ b\ a</math> - This is only a correct implementation if the evaluation strategy is applicative order.
: <math>\operatorname{not}_2 = \lambda p.p\ (\lambda a.\lambda b. b)\ (\lambda a.\lambda b. a) = p \operatorname{false} \operatorname{true}</math> - This is only a correct implementation if the evaluation strategy is normal order.
: <math>\operatorname{xor} = \lambda a.\lambda b.a\ (\operatorname{not}\ b)\ b</math>
: <math>\operatorname{if} = \lambda p.\lambda a.\lambda b.p\ a\ b</math>
 
Some examples:
 
: <math>\operatorname{and} \operatorname{true} \operatorname{false} = (\lambda p.\lambda q.p\ q\ p)\ \operatorname{true}\ \operatorname{false} = \operatorname{true} \operatorname{false} \operatorname{true} = (\lambda a.\lambda b.a) \operatorname{false} \operatorname{true} = \operatorname{false} </math>
 
:<math>\operatorname{or} \operatorname{true} \operatorname{false} = (\lambda p.\lambda q.p\ p\ q)\ (\lambda a.\lambda b.a)\ (\lambda a.\lambda b.b) = (\lambda a.\lambda b.a)\ (\lambda a.\lambda b.a)\ (\lambda a.\lambda b.b) = (\lambda a.\lambda b.a) = \operatorname{true} </math>
 
:<math>\operatorname{not1}\ \operatorname{true} = (\lambda p.\lambda a.\lambda b.p\ b\ a) (\lambda a.\lambda b.a) = \lambda a.\lambda b.(\lambda a.\lambda b.a)\ b\ a = \lambda a.\lambda b.(\lambda x.b)\ a = \lambda a.\lambda b.b = \operatorname{false} </math>
 
:<math>\operatorname{not2}\ \operatorname{true} = (\lambda p.p\ (\lambda a.\lambda b. b) (\lambda a.\lambda b. a)) (\lambda a.\lambda b. a) = (\lambda a.\lambda b. a) (\lambda a.\lambda b. b) (\lambda a.\lambda b. a) = (\lambda b. (\lambda a.\lambda b. b))\ (\lambda a.\lambda b. a) = \lambda a.\lambda b.b = \operatorname{false} </math>
 
== Predicates ==
 
A ''predicate'' is a function that returns a Boolean value. The most fundamental predicate is <math>\operatorname{IsZero}</math>, which returns <math>\operatorname{true}</math> if its argument is the Church numeral <math>0</math>, and <math>\operatorname{false}</math> if its argument is any other Church numeral:
: <math>\operatorname{IsZero} = \lambda n.n\ (\lambda x.\operatorname{false})\ \operatorname{true}</math>
 
The following predicate tests whether the first argument is less-than-or-equal-to the second:
: <math>\operatorname{LEQ} = \lambda m.\lambda n.\operatorname{IsZero}\ (\operatorname{minus}\ m\ n)</math>,
 
Because of the identity,
: <math> x = y \equiv (x <= y \and y <= x) </math>
The test for equality may be implemented as,
: <math>\operatorname{EQ} = \lambda m.\lambda n.\operatorname{and}\ (\operatorname{LEQ}\ m\ n)\ (\operatorname{LEQ}\ n\ m) </math>
 
==Church pairs==
{{see also|Cons}}
Church pairs are the Church encoding of the [[cons|pair]] (two-tuple) type.  The pair is represented as a function that takes a function argument.  When given its argument it will apply the argument to the two components of the pair.  The definition in [[lambda calculus]] is,
 
: <math>\operatorname{pair} \equiv \lambda x.\lambda y.\lambda z.z\ x\ y </math>
: <math>\operatorname{first} \equiv \lambda p.p\ (\lambda x.\lambda y.x) </math>
: <math>\operatorname{second} \equiv \lambda p.p\ (\lambda x.\lambda y.y) </math>
 
For example,
: <math> \operatorname{first}\ (\operatorname{pair}\ a\ b) </math>
:: <math> = (\lambda p.p\ (\lambda x.\lambda y.x))\ ((\lambda x.\lambda y.\lambda z.z\ x\ y)\ a\ b) </math>
:: <math> = (\lambda p.p\ (\lambda x.\lambda y.x))\ (\lambda z.z\ a\ b) </math>
:: <math> = (\lambda z.z\ a\ b)\ (\lambda x.\lambda y.x) </math>
:: <math> = (\lambda x.\lambda y.x)\ a\ b = a </math>
 
==List encodings==
 
An ([[Immutable object|immutable]]) [[list (computing)|list]] is constructed from list nodes.  The basic operations on the list are;
 
{| class="wikitable"
|-
! Function !! Description
|-
| ''nil'' || Construct an empty list.
|-
| ''isnil'' || Test if list is empty.
|-
| ''cons'' || Prepend a given value to a (possibly empty) list.
|-
| ''head'' || Get the first element of the list.
|-
| ''tail'' || Get the rest of the list.
|}
 
Three different representations of lists are given.
* Build each list node from two pairs (to allow for empty lists).
* Build each list node from one pair.
* Represent the list using the [[Fold (higher-order function)|right fold function]].
 
=== Two pairs as a list node ===
 
A nonempty list can implemented by a Church pair;
* ''First'' contains the head.
* ''Second'' contains the tail.
 
However this does not give a representation of the empty list, because there is no "null" pointer.  To represent null, the pair may be wrapped in another pair, giving free values,
* ''First'' - Is the null pointer (empty list).
* ''Second.First'' contains the head.
* ''Second.Second'' contains the tail.
 
Using this idea the basic list operations can be defined like this:<ref>{{cite book
  | last = Pierce
  | first = Benjamin C.
  | authorlink = Benjamin C. Pierce
  | title = [[Types and Programming Languages]]
  | publisher = [[MIT Press]]
  | year = 2002
  | pages = 500
  | isbn = 978-0-262-16209-8}}</ref>
 
{| class="wikitable"
|-
! Expression !! Description
|-
| <math> \operatorname{nil} \equiv \operatorname{pair}\ \operatorname{true}\ \operatorname{true} </math>
| The first element of the pair is ''true'' meaning the list is null.
|-
| <math> \operatorname{isnil} \equiv \operatorname{first} </math>
| Retrieve the null (or empty list) indicator.
|-
| <math> \operatorname{cons}  \equiv \lambda h.\lambda t.\operatorname{pair} \operatorname{false}\  (\operatorname{pair} h\ t) </math>
| Create a list node, which is not null, and give it a head ''h'' and a tail ''t''.
|-
| <math> \operatorname{head}  \equiv \lambda z.\operatorname{first}\ (\operatorname{second} z) </math>
| ''second.first'' is the head.
|-
| <math> \operatorname{tail}  \equiv \lambda z.\operatorname{second}\ (\operatorname{second} z) </math>
| ''second.second'' is the tail.
|}
 
In a ''nil'' node ''second'' is never accessed, provided that '''head''' and '''tail''' are only applied to nonempty lists.
 
=== One pair as a list node ===
 
Alternatively, define <ref>John Tromp, Binary Lambda Calculus and Combinatory Logic, in ''Randomness And Complexity, from Leibniz To Chaitin'', ed. Cristian S. Calude, World Scientific Publishing Company, October 2008. [http://www.cwi.nl/~tromp/cl/LC.pdf (pdf version)]</ref>
: <math>\operatorname{cons}  \equiv \operatorname{pair} </math>
: <math>\operatorname{head}  \equiv \operatorname{first} </math>
: <math>\operatorname{tail}  \equiv \operatorname{second} </math>
: <math>\operatorname{nil}  \equiv \operatorname{false} </math>
: <math>\operatorname{isnil} \equiv \lambda l.l (\lambda h.\lambda t.\lambda d.\operatorname{false}) \operatorname{true} </math>
where the last definition is a special case of the general
: <math>\operatorname{process-list} \equiv \lambda l.l (\lambda h.\lambda t.\lambda d. \operatorname{head-and-tail-clause}) \operatorname{nil-clause}  </math>
 
=== Represent the list using ''right fold'' ===
 
As an alternative to the encoding using Church pairs, a list can be encoded by identifying it with its [[Fold (higher-order function)|right fold function]].  For example, a list of three elements x, y and z can be encoded by a higher-order function which when applied to a combinator c and a value n returns c x (c y (c z n)).
 
: <math>\operatorname{nil} \equiv \lambda c.\lambda n.n</math>
: <math>\operatorname{isnil} \equiv \lambda l.l\ (\lambda h.\lambda t.\operatorname{false})\ \operatorname{true}</math>
: <math>\operatorname{cons} \equiv \lambda h.\lambda t.\lambda c.\lambda n.c\ h\ (t\ c\ n)</math>
: <math>\operatorname{head} \equiv \lambda l.l\ (\lambda h.\lambda t.h)\ \operatorname{false}</math>
: <math>\operatorname{tail} \equiv \lambda l. \operatorname{first}\ (l\ (\lambda x.\lambda p.\operatorname{pair}\ (\operatorname{second}\ p)\ (\operatorname{cons}\ x\ (\operatorname{second}\ p)))\ (\operatorname{pair}\ \operatorname{nil}\ \operatorname{nil})) </math>
 
== Derivation of predecessor function ==
 
The predecessor function used in the Church Encoding is,
 
<math>\operatorname{pred}(n) = \begin{cases} 0 & \mbox{if }n=0, \\ n-1 & \mbox{otherwise}\end{cases}</math>.
 
To build the predecessor we need a way of applying the function 1 less time.  A numeral ''n'' applies the function ''f'' ''n'' times to ''x''.  The predecessor function must use the numeral ''n'' to apply the function ''n-1'' times.
 
Before implementing the predecessor function, here is a scheme that wraps the value in a container function.  We will define new functions to use in place of ''f'' and ''x'', called ''inc'' and ''init''.  The container function is called ''value''.  The left hand side of the table shows a numeral ''n'' applied to ''inc'' and ''init''.
 
{| class="wikitable"
|-
! Number || Using init !! Using const
|-
| 0
| <math> \operatorname{init} = \operatorname{value}\ x </math>
|
|-
| 1
| <math> \operatorname{inc}\ \operatorname{init} = \operatorname{value}\ (f\ x) </math>
| <math> \operatorname{inc}\ \operatorname{const} = \operatorname{value}\ x </math>
|-
| 2
| <math> \operatorname{inc}\ (\operatorname{inc}\ \operatorname{init}) = \operatorname{value}\ (f\ (f\ x)) </math>
| <math> \operatorname{inc}\ (\operatorname{inc}\ \operatorname{const}) = \operatorname{value}\ (f\ x) </math>
|-
| 3
| <math> \operatorname{inc}\ (\operatorname{inc}\ (\operatorname{inc}\ \operatorname{init})) = \operatorname{value}\ (f\ (f\ (f\ x))) </math>
| <math> \operatorname{inc}\ (\operatorname{inc}\ (\operatorname{inc}\ \operatorname{const})) = \operatorname{value}\ (f\ (f\ x)) </math>
|-
| colspan='3'  align='center' style='border-left: 1px solid white; border-right: 1px solid white' | ...
|-
| n
| <math> n \operatorname{inc}\ \operatorname{init} = \operatorname{value}\ (f^n\ x) = \operatorname{value}\ (n\ f\ x) </math>
| <math> n \operatorname{inc}\ \operatorname{const} = \operatorname{value}\ (f^{n-1}\ x) = \operatorname{value}\ ((n-1)\ f\ x) </math>
|}
 
The general recurrence rule is,
:<math> \operatorname{inc}\ (\operatorname{value}\ v) = \operatorname{value}\ (f\ v)</math>
 
If there is also a function to retrieve the value from the container (called ''extract''),
:<math> \operatorname{extract}\ (\operatorname{value}\ v) = v</math>
 
Then ''extract'' may be used to define the ''samenum'' function as,
: <math>\operatorname{samenum} = \lambda n.\lambda f.\lambda x.\operatorname{extract}\ (n \operatorname{inc} \operatorname{init})  = \lambda n.\lambda f.\lambda x.\operatorname{extract}\ (\operatorname{value}\ (n\ f\ x)) = \lambda n.\lambda f.\lambda x.n\ f\ x = \lambda n.n</math>
 
The ''samenum'' function is not intrinsically useful.  What we want is the initial value to skip an application of ''f''.  Call this new initial container ''const''.  The right hand side of the above table shows the expansions of ''n'' ''inc'' ''const''.  Then by replacing ''init'' with ''const'' in the expression for the ''same'' function we get the predecessor function,
 
: <math>\operatorname{pred} = \lambda n.\lambda f.\lambda x.\operatorname{extract}\ (n \operatorname{inc} \operatorname{const}) = \lambda n.\lambda f.\lambda x.\operatorname{extract}\ (\operatorname{value}\ ((n-1)\ f\ x)) = \lambda n.\lambda f.\lambda x.(n-1)\ f\ x = \lambda n.(n-1)</math>
 
As explained below the functions ''inc'', ''init'', ''const'', ''value'' and ''extract'' may be defined as,
{| class="wikitable"
|-
! <math> \operatorname{value} </math>
! <math> \operatorname{extract}\ k </math>
! <math> \operatorname{inc} </math>
! <math> \operatorname{init} </math>
! <math> \operatorname{const} </math>
|-
| <math> \lambda v.(\lambda h.h\ v) </math>
| <math> k\ \lambda u.u </math>
| <math> \lambda g.\lambda h.h\ (g\ f) </math>
| <math> \lambda h.h\ x </math>
| <math> \lambda u.x </math>
|}
 
Which gives the lambda expression for ''pred'' as,
: <math>\operatorname{pred} = \lambda n.\lambda f.\lambda x.n\ (\lambda g.\lambda h.h\ (g\ f))\ (\lambda u.x)\ (\lambda u.u) </math>
 
{| class="wikitable"
|-
| align='top' |
=== Value container ===
 
The value container applies a function to its value.  It is defined by,
:<math> \operatorname{value}\ v\ h = h\ v </math>
 
so,
:<math> \operatorname{value} = \lambda v.(\lambda h.h\ v) </math>
 
=== Inc ===
 
The ''inc'' function should take a value containing ''v'', and return a new value containing ''f v''.
:<math> \operatorname{inc}\ (\operatorname{value}\ v) = \operatorname{value}\ (f\ v)</math>
 
Letting g be the value container,
:<math> g = \operatorname{value}\ v</math>
then,
:<math> g\ f = \operatorname{value}\ v\ f = f\ v</math>
 
so,
:<math> \operatorname{inc}\ g = \operatorname{value}\ (g\ f) </math>
:<math> \operatorname{inc} = \lambda g.\lambda h.h\ (g\ f) </math>
| align='top' |
=== Extract ===
 
The value may be extracted by applying the identity function,
:<math> I = \lambda u.u </math>
 
Using ''I'',
:<math> \operatorname{value}\ v\ I = v </math>
 
so,
:<math> \operatorname{extract}\ k = k\ I </math>
 
=== Const ===
 
To implement ''pred'' the ''init'' function is replaced with the ''const'' that does not apply ''f''.  We need ''const'' to satisfy,
:<math> \operatorname{inc}\ \operatorname{const} = \operatorname{value}\ x </math>
:<math> \lambda h.h\ (\operatorname{const}\ f) = \lambda h.h\ x </math>
 
Which is satisfied if,
:<math> \operatorname{const}\ f = x </math>
 
Or as a lambda expression,
:<math> \operatorname{const} = \lambda u.x </math>
|}
 
==See also==
*[[Lambda calculus]]
*[[System F]] for Church numerals in a typed calculus
*[[Mogensen–Scott encoding]]
 
==References==
*[http://www.cs.uiowa.edu/~astump/papers/archon.pdf Directly Reflective Meta-Programming]
*[http://www.cs.rice.edu/~javaplt/311/Readings/supplemental.pdf Church numerals and booleans explained] by Robert Cartwright at [[Rice University]]
*[http://www.archive.org/download/TheoreticalFoundationsForPracticaltotallyFunctionalProgramming/33429551_PHD_totalthesis.pdf Theoretical Foundations For Practical 'Totally Functional Programming'] (Chapters 2 and 5) All about Church and other similar encodings, including how to derive them and operations on them, from first principles
*[http://www.csse.monash.edu.au/~lloyd/tildeFP/Lambda/Examples/const-int/ Some interactive examples of Church numerals]
<references/>
 
[[Category:Lambda calculus]]

Latest revision as of 03:36, 27 December 2014

Wilber Berryhill is what his wife enjoys to contact him and he totally enjoys this name. To perform lacross is 1 of the things she loves most. For many years she's been working as a travel agent. My spouse and I reside in Mississippi and I love each working day living right here.

My blog email psychic readings (visit my homepage)