Flexural rigidity: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Rahul4624
mNo edit summary
en>Phleg1
 
Line 1: Line 1:
In [[mathematics]], '''hyperfunctions''' are generalizations of functions, as a 'jump' from one [[holomorphic function]] to another at a boundary, and can be thought of informally as  [[Distribution (mathematics)|distribution]]s of infinite order. Hyperfunctions were introduced by [[Mikio Sato]] in 1958, building upon earlier work by [[Alexander Grothendieck|Grothendieck]] and others. In Japan, it is usually called the '''Sato's hyperfuncion''' with the name of M. Sato.
Hello and welcome. My name is Ling. Camping is something that I've done for years. She is currently a cashier but soon she'll be on her personal. Delaware is the place I adore most but I require to transfer for my family.<br><br>Also visit my website: auto warranty ([http://Www.Chaty-Hradec.com/cs/content/crucial-knowledge-fixing-your-car-problems please click Www.Chaty-Hradec.com])
 
== Formulation ==
 
A hyperfunction on the real line can be conceived of as the 'difference' between one holomorphic function defined on the upper half-plane and another on the lower half-plane. That is, a hyperfunction is specified by a pair (''f'',&nbsp;''g''), where ''f'' is a holomorphic function on the upper half-plane and ''g'' is a holomorphic function on the lower half-plane.
 
Informally, the hyperfunction is what the difference ''f''&nbsp;&minus;&nbsp;''g'' would be at the real line itself. This difference is not affected by adding the same holomorphic function to both ''f'' and ''g'', so if h is a holomorphic function on the whole [[complex plane]], the hyperfunctions (''f'',&nbsp;''g'') and (''f''&nbsp;+&nbsp;''h'',&nbsp;''g''&nbsp;+&nbsp;''h'') are defined to be equivalent.
 
===Definition in one dimension===
 
The motivation can be concretely implemented using ideas from [[sheaf cohomology]].  Let <math>\mathcal{O}</math> be the [[sheaf (mathematics)|sheaf]] of [[holomorphic function]]s on '''C'''. Define the hyperfunctions on the [[real line]] by
 
:<math>\mathcal{B}(\mathbf{R}) = H^1_{\mathbf{R}}(\mathbf{C}, \mathcal{O}),</math>
 
the first [[local cohomology]] group.
 
Concretely, let '''C'''<sup>+</sup> and '''C'''<sup>&minus;</sup>
be the [[upper half-plane]] and [[lower half-plane]] respectively. Then
 
:<math>\mathbf{C}^+ \cup \mathbf{C}^- = \mathbf{C} \setminus \mathbf{R}.\,</math>
 
so
 
:<math>H^1_{\mathbf{R}}(\mathbf{C}, \mathcal{O}) = \left [ H^0(\mathbf{C}^+, \mathcal{O}) \oplus H^0(\mathbf{C}^-, \mathcal{O}) \right ] /H^0(\mathbf{C}, \mathcal{O}).</math>
 
Since the zeroth cohomology group of any sheaf is simply the global sections of that sheaf, we see that a hyperfunction is a pair of holomorphic functions one each on the upper and lower complex halfplane modulo entire holomorphic functions.
 
== Examples ==
 
*If ''f'' is any holomorphic function on the whole complex plane, then the restriction of ''f'' to the real axis is a hyperfunction, represented by either (''f'',&nbsp;0) or (0,&nbsp;&minus;''f'').
 
*The [[Heaviside step function]] can be represented as <math>H(x) = \left(\frac{1}{2\pi i}\log(z),\frac{1}{2\pi i}\log(z)-1\right)</math>.
 
*The [[Dirac delta function|Dirac delta "function"]] is represented by <math>\left(\frac{1}{2\pi iz},\frac{1}{2\pi iz}\right)</math>. This is really a restatement of [[Cauchy's integral formula]]. To verify it one can calculate the integration of ''f'' just below the real line, and subtract integration of ''g'' just above the real line - both from left to right. Note that the hyperfunction can be non-trivial, even if the components are analytic continuation of the same function. Also this can be easily checked by differentiating the Heaviside function.
 
*If ''g'' is a [[continuous function]] (or more generally a distribution) on the real line with support contained in a bounded interval ''I'', then ''g'' corresponds to the hyperfunction (''f'',&nbsp;&minus;''f''), where ''f'' is a holomorphic function on the complement of ''I'' defined by
 
::<math> f(z)={1\over 2\pi i}\int_{x\in I} g(x){dx\over z-x}.</math>
 
:This function ''f ''  jumps in value by ''g''(''x'') when crossing the real axis at the point ''x''. The formula for ''f'' follows from the previous example by writing ''g'' as the [[convolution]] of itself with the Dirac delta function.
 
*If ''f'' is any function that is holomorphic everywhere except for an [[essential singularity]] at 0 (for example, ''e''<sup>1/''z''</sup>), then (''f'',&nbsp;&minus;''f'') is a hyperfunction with support 0 that is not a distribution. If ''f'' has a pole of finite order at 0 then (''f'',&nbsp;&minus;''f'') is a distribution, so when ''f'' has an essential singularity  then (''f'',&minus;''f'') looks like a "distribution of infinite order" at 0. (Note that distributions always have ''finite'' order at any point.)
 
==See also==
* [[hypersurface]]
 
== References ==
 
* {{citation|last=Hörmander|first=Lars|authorlink=Lars Hörmander|title=The analysis of linear partial differential operators, Volume I: Distribution theory and Fourier analysis|publisher=Springer-Verlag|publication-place=Berlin|year=2003|isbn=3-540-00662-1}}.
 
* {{citation|last=Sato|first=Mikio|authorlink=Mikio Sato|title=Theory of Hyperfunctions, I|id={{hdl|2261/6027}}|journal=Journal of the Faculty of Science, University of Tokyo. Sect. 1, Mathematics, astronomy, physics, chemistry|volume=8|year=1959|issue=1|pages=139–193|mr=0114124}}.
 
* {{citation|last=Sato|first=Mikio|authorlink=Mikio Sato|title=Theory of Hyperfunctions, II|id={{hdl|2261/6031}}|journal=Journal of the Faculty of Science, University of Tokyo. Sect. 1, Mathematics, astronomy, physics, chemistry|volume=8|year=1960|issue=2|pages=387–437|mr=0132392}}.
 
[[Category:Algebraic analysis]]
[[Category:Complex analysis]]
[[Category:Generalized functions]]
[[Category:Sheaf theory]]

Latest revision as of 23:34, 11 January 2015

Hello and welcome. My name is Ling. Camping is something that I've done for years. She is currently a cashier but soon she'll be on her personal. Delaware is the place I adore most but I require to transfer for my family.

Also visit my website: auto warranty (please click Www.Chaty-Hradec.com)