Discrete Poisson equation

From formulasearchengine
Jump to navigation Jump to search

In general relativity, optical scalars refer to a set of three scalar functions (expansion), (shear) and (twist/rotation/vorticity) describing the propagation of a geodesic null congruence.[1][2][3][4][5]


In fact, these three scalars can be defined for both timelike and null geodesic congruences in an identical spirit, but they are called "optical scalars" only for the null case. Also, it is their tensorial predecessors that are adopted in tensorial equations, while the scalars mainly show up in equations written in the language of Newman-Penrose formalism.

Definitions: expansion, shear and twist

For geodesic timelike congruences

Denote the tangent vector field of an observer's worldline (in a timelike congruence) as , and then one could construct induced "spatial metrics" that



where works as a spatially projecting operator. Use to project the coordinate covariant derivative and one obtains the "spatial" auxiliary tensor ,



where represents the four-acceleration, and is purely spatial in the sense that . Specifically for an observer with a "geodesic" timelike worldline, we have



Now decompose into the symmetric part and ,



is trace-free () while is of nonzero trace, . Thus, the symmetric part can be further rewritten into its trace and trace-free part,



Hence, all in all we have


For geodesic null congruences

Now, consider a geodesic null congruence with tangent vector field . Similar to the timelike situation, we also define



which can be decomposed into



where



Here, "hatted" quantities are utilized to stress that these quantities for null congruences are two-dimensional as opposed to the three-dimensional timelike case. However, if we only discuss null congruences in a paper, the hats can be omitted for simplicity.

Definitions: optical scalars for null congruences

The optical scalars [1][2][3][4][5] come straightforwardly from "scalarization" of the tensors in Eq(9).


The expansion of a geodesic null congruence is defined by (where for clearance we will adopt another standard symbol "" to denote the covariant derivative )




The shear of a geodesic null congruence is defined by



The twist of a geodesic null congruence is defined by



In practice, a geodesic null congruence is usually defined by either its outgoing () or ingoing () tangent vector field (which are also its null normals). Thus, we obtain two sets of optical scalars and , which are defined with respect to and , respectively.

Applications in decomposing the propagation equations

For a geodesic timelike congruence

The propagation (or evolution) of for a geodesic timelike congruence along respects the following equation,



Take the trace of Eq(13) by contracting it with , and Eq(13) becomes



in terms of the quantities in Eq(6). Moreover, the trace-free, symmetric part of Eq(13) is



Finally, the antisymmetric component of Eq(13) yields


For a geodesic null congruence

A (generic) geodesic null congruence obeys the following propagation equation,



With the definitions summarized in Eq(9), Eq(14) could be rewritten into the following componential equations,




For a restricted geodesic null congruence

For a geodesic null congruence restricted on a null hypersurface, we have




Spin coefficients, Raychaudhuri's equation and optical scalars

For a better understanding of the previous section, we will briefly review the meanings of relevant NP spin coefficients in depicting null congruences.[1] The tensor form of Raychaudhuri's equation[6] governing null flows reads



where is defined such that . The quantities in Raychaudhuri's equation are related with the spin coefficients via





where Eq(24) follows directly from and



See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  1. 1.0 1.1 1.2 Eric Poisson. A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge: Cambridge University Press, 2004. Chapter 2.
  2. 2.0 2.1 Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, Eduard Herlt. Exact Solutions of Einstein's Field Equations. Cambridge: Cambridge University Press, 2003. Chapter 6.
  3. 3.0 3.1 Subrahmanyan Chandrasekhar. The Mathematical Theory of Black Holes. Oxford: Oxford University Press, 1998. Section 9.(a).
  4. 4.0 4.1 Jeremy Bransom Griffiths, Jiri Podolsky. Exact Space-Times in Einstein's General Relativity. Cambridge: Cambridge University Press, 2009. Section 2.1.3.
  5. 5.0 5.1 P Schneider, J Ehlers, E E Falco. Gravitational Lenses. Berlin: Springer, 1999. Section 3.4.2.
  6. Sayan Kar, Soumitra SenGupta. The Raychaudhuri equations: a brief review. Pramana, 2007, 69(1): 49-76. [arxiv.org/abs/gr-qc/0611123v1 gr-qc/0611123]