Biholomorphism: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Fly by Night
no need for a citation. It's a simple application of the chain rule
 
en>Addbot
m Bot: Migrating 3 interwiki links, now provided by Wikidata on d:q377166
Line 1: Line 1:
Hello and welcome. My title is Numbers Wunder. Managing individuals has been his working day job for a while. Her family members lives in Minnesota. To collect coins is what her family and her enjoy.<br><br>Look into my web blog; [http://www.hotporn123.com/blog/150819 home std test]
In [[mathematics]], a '''jacket matrix''' is a [[square matrix]]  <math>A= (a_{ij})</math> of order  ''n''  if its entries are non-zero and [[real number|real]], [[complex number|complex]], or from a [[finite field]], and [[File:Had_otr_jac.png|thumb|Hierarchy of matrix types]]
 
:<math>\  AB=BA=I_n </math>
 
where ''I''<sub>''n''</sub> is the [[identity matrix]], and
:<math>\ B ={1 \over n}(a_{ij}^{-1})^T.</math>
 
where ''T'' denotes the [[transpose]] of the matrix.
 
In other words, the inverse of a jacket matrix is determined its element-wise or block-wise inverse. The definition above may also be expressed as:
 
:<math>\forall u,v \in \{1,2,\dots,n\}:~a_{iu},a_{iv} \neq 0, ~~~~ \sum_{i=1}^n a_{iu}^{-1}\,a_{iv} =
  \begin{cases}
      n, & u = v\\
      0, & u \neq v
     
  \end{cases}
</math>
 
The jacket matrix is a generalization of the [[Hadamard matrix]],also it is a [[Diagonal]] block-wise inverse matrix.
 
== Example 1. ==
 
:<math>
A = \left[  \begin{array}{rrrr}  1 & 1 & 1 & 1 \\  1 & -2 & 2 & -1 \\  1 & 2 & -2 & -1 \\  1 & -1 & -1 & 1 \\  \end{array} \right],</math>:<math>B ={1 \over 4} \left[
  \begin{array}{rrrr}  1 & 1 & 1 & 1 \\[6pt]  1 & -{1 \over 2} & {1 \over 2} & -1 \\[6pt]
  1 & {1 \over 2} & -{1 \over 2} & -1 \\[6pt]    1 & -1 & -1 & 1\\[6pt]  \end{array}
\right].</math>
 
or more general
:<math>
A = \left[  \begin{array}{rrrr}  a & b & b & a \\  b & -c & c & -b \\  b & c & -c & -b \\
  a & -b & -b & a  \end{array} \right], </math>:<math> B = {1 \over 4} \left[  \begin{array}{rrrr}  {1 \over a} & {1 \over b} & {1 \over b} & {1 \over a} \\[6pt]  {1 \over b} & -{1 \over c} & {1 \over c} & -{1 \over b} \\[6pt]  {1 \over b} & {1 \over c} & -{1 \over c} & -{1 \over b} \\[6pt]  {1 \over a} & -{1 \over b} & -{1 \over b} & {1 \over a}  \end{array} \right],</math>
== Example 2.==
:<math> \mathbf{J}= \left[  \begin{array}{rrrr}  I & 0 & 0 & 0 \\  0  &  c  &  s &  0 \\ 0 &  -s &  c  &  0 \\  0 & 0 & 0 & I \\  \end{array} \right],</math> :<math> \mathbf{J}\mathbf{J}^{\mathrm{T}} = \mathbf{J}^{\mathrm{T}}\mathbf{J} =\mathbf{I}</math>
 
== References ==
* Moon Ho Lee,The Center Weighted Hadamard Transform, ''IEEE Transactions on Circuits'' Syst. Vol. 36, No. 9, PP. 1247–1249, Sept.1989.
* K.J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, UK, Chapter 4.5.1: The jacket matrix construction, PP. 85–91, 2007.
* Moon Ho Lee, Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing,LAP LAMBERT Publishing, Germany,Nov. 2012.
 
==External links==
* [http://mdmc.chonbuk.ac.kr/english/download/report%201.pdf Technical report: Linear-fractional Function, Elliptic Curves, and Parameterized Jacket Matrices]
* [http://mdmc.chonbuk.ac.kr/english/images/Jacket%20matrix%20and%20its%20fast%20algorithm%20for%20wireless%20signal%20processing.pdf Jacket Matrix and Its Fast Algorithms for Cooperative Wireless Signal Processing]
* [https://www.morebooks.de/store/gb/book/jacket-matrices/isbn/978-3-659-29145-6: Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing]
[[Category:Matrices]]

Revision as of 18:44, 2 March 2013

In mathematics, a jacket matrix is a square matrix of order n if its entries are non-zero and real, complex, or from a finite field, and

Hierarchy of matrix types

where In is the identity matrix, and

where T denotes the transpose of the matrix.

In other words, the inverse of a jacket matrix is determined its element-wise or block-wise inverse. The definition above may also be expressed as:

The jacket matrix is a generalization of the Hadamard matrix,also it is a Diagonal block-wise inverse matrix.

Example 1.

:

or more general

:

Example 2.

 :

References

  • Moon Ho Lee,The Center Weighted Hadamard Transform, IEEE Transactions on Circuits Syst. Vol. 36, No. 9, PP. 1247–1249, Sept.1989.
  • K.J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, UK, Chapter 4.5.1: The jacket matrix construction, PP. 85–91, 2007.
  • Moon Ho Lee, Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing,LAP LAMBERT Publishing, Germany,Nov. 2012.

External links