Arithmetic–geometric mean: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Trappist the monk
m →‎Related concepts: fix CS1 deprecated date parameter errors (test) using AWB
 
en>Rafiadler
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{mergefrom|AGM method|date=September 2012}}
My name is Monique Mustar but everybody calls me Monique. I'm from United States. I'm studying at the university (2nd year) and I play the Cello for 6 years. Usually I choose songs from the famous films :). <br>I have two sister. I like Target Shooting, [http://Www.Ehow.com/search.html?s=watching+TV watching TV] (Two and a Half Men) and College football.<br><br>Here is my webpage :: [http://www.amazon.com/Using-Attraction-Create-Your-Reality-ebook/dp/B00LA6ZZEY Manifesting Secrets Using LOA]
In [[mathematics]], the '''arithmetic–geometric mean (AGM)''' of two positive [[real number]]s {{math|''x''}} and {{math|''y''}} is defined as follows:
 
First compute the [[arithmetic mean]] of {{math|''x''}} and {{math|''y''}} and call it {{math|''a''<sub>1</sub>}}. Next compute the [[geometric mean]] of {{math|''x''}} and {{math|''y''}} and call it {{math|''g''<sub>1</sub>}}; this is the [[square root]] of the product {{math|''xy''}}:
 
:<math>\begin{align}
a_1 &= \frac{1}{2}(x + y)\\
g_1 &= \sqrt{xy}
\end{align}</math>
 
Then iterate this operation with {{math|''a''<sub>1</sub>}} taking the place of {{math|''x''}} and {{math|''g''<sub>1</sub>}} taking the place of {{math|''y''}}. In this way, two [[sequence]]s {{math|(''a''<sub>''n''</sub>)}} and {{math|(''g''<sub>''n''</sub>)}} are defined:
 
:<math>\begin{align}
a_{n+1} &= \frac{1}{2}(a_n + g_n)\\
g_{n+1} &= \sqrt{a_n g_n}
\end{align}</math>
 
These two sequences [[limit of a sequence|converge]] to the same number, which is the '''arithmetic–geometric mean''' of {{math|''x''}} and {{math|''y''}}; it is denoted by {{math|''M''(''x'', ''y'')}}, or sometimes by {{math|agm(''x'', ''y'')}}.
 
This can be used for algorithmic purposes as in the [[AGM method]].
 
==Example==
To find the arithmetic–geometric mean of {{math|''a''<sub>0</sub> {{=}} 24}} and {{math|''g''<sub>0</sub> {{=}} 6}}, first calculate their arithmetic mean and geometric mean, thus:
 
:<math>\begin{align}
a_1 &= \frac{1}{2}(24 + 6) = 15\\
g_1 &= \sqrt{24 \times 6} = 12
\end{align}</math>
 
and then iterate as follows:
 
:<math>\begin{align}
a_2 &= \frac{1}{2}(15 + 12) = 13.5\\
g_2 &= \sqrt{15 \times 12} = 13.41640786500\dots\\
\dots
\end{align}</math>
 
The first five iterations give the following values:
 
:{| class="wikitable"
|-
! {{math|''n''}}
! {{math|''a''<sub>''n''</sub>}}
! {{math|''g''<sub>''n''</sub>}}
|-
| 0
| 24
| 6
|-
| 1
| {{underline|1}}5
| {{underline|1}}2
|-
| 2
| {{underline|13}}.5
| {{underline|13}}.416407864998738178455042…
|-
| 3
| {{underline|13.458}}203932499369089227521…
| {{underline|13.458}}139030990984877207090…
|-
| 4
| {{underline|13.4581714817}}45176983217305…
| {{underline|13.4581714817}}06053858316334…
|-
| 5
| {{underline|13.4581714817256154207668}}20…
| {{underline|13.4581714817256154207668}}06…
|}
 
As can be seen, the number of digits in agreement (underlined) approximately doubles with each iteration.  The arithmetic–geometric mean of 24 and 6 is the common limit of these two sequences, which is approximately 13.4581714817256154207668131569743992430538388544.<ref>[http://www.wolframalpha.com/input/?i=agm%2824%2C+6%29 agm(24, 6) at WolframAlpha]</ref>
 
== History ==
The first algorithm based on this sequence pair appeared in the works of [[Adrien-Marie Legendre|Legendre]]. Its properties were further analyzed by [[Gauss]].<ref name="BerggrenBorwein2004">{{cite book|editor=J.L. Berggren, Jonathan M. Borwein, Peter Borwein|title=Pi: A Source Book|url=http://books.google.com/books?id=QlbzjN_5pDoC&pg=PA481|year=2004|publisher=Springer|isbn=978-0-387-20571-7|page=481|chapter=The Arithmetic-Geometric Mean of Gauss|author=David A. Cox}} first published in ''[[L'Enseignement Mathématique]]'', t. 30 (1984), p. 275-330</ref>
 
==Properties==
The geometric mean of two positive numbers is never bigger than the arithmetic mean (see [[inequality of arithmetic and geometric means]]); as a consequence, {{math|(''g<sub>n</sub>'')}} is an increasing sequence, {{math|(''a<sub>n</sub>'')}} is a decreasing sequence, and {{math|''g<sub>n</sub>'' ≤ ''M''(''x'',&nbsp;''y'') ≤ ''a<sub>n</sub>''}}. These are strict inequalities if {{math|''x'' ≠ ''y''}}.
 
{{math|''M''(''x'', ''y'')}} is thus a number between the geometric and arithmetic mean of {{math|''x''}} and {{math|''y''}}; in particular it is between {{math|''x''}} and {{math|''y''}}.
 
If {{math|''r'' ≥ 0}}, then {{math|''M''(''rx'',''ry'') {{=}} ''r M''(''x'',''y'')}}.
 
There is an integral-form expression for {{math|''M''(''x'',''y'')}}:
 
:<math>\begin{align}M(x,y) &= \frac\pi2\bigg/\int_0^{\pi/2}\frac{d\theta}{\sqrt{x^2\cos^2\theta+y^2\sin^2\theta}}\\
&=\frac{\pi}{4} (x + y) \bigg/ K\left( \frac{x - y}{x + y} \right)
\end{align}</math>
 
where {{math|''K''(''k'')}} is the [[elliptic integral|complete elliptic integral of the first kind]]:
 
:<math>K(k) = \int_0^{\pi/2}\frac{d\theta}{\sqrt{1 - k^2\sin^2(\theta)}} </math>
 
Indeed, since the arithmetic–geometric process converges so quickly, it provides an effective way to compute elliptic integrals via this formula. In engineering, it is used for instance in [[elliptic filter]] design.<ref name="Dimopoulos2011">{{cite book|author=Hercules G. Dimopoulos|title=Analog Electronic Filters: Theory, Design and Synthesis|url=http://books.google.com/books?id=6W1eX4QwtyYC&pg=PA147|year=2011|publisher=Springer|isbn=978-94-007-2189-0|pages=147–155}}</ref>
 
== Related concepts ==
The reciprocal of the arithmetic–geometric mean of 1 and the [[square root of 2]] is called [[Gauss's constant]], after [[Carl Friedrich Gauss]].
 
:<math>\frac{1}{M(1, \sqrt{2})} = G = 0.8346268\dots</math>
 
The [[geometric–harmonic mean]] can be calculated by an analogous method, using sequences of geometric and [[harmonic mean|harmonic]] means.  The arithmetic–harmonic mean can be similarly defined, but takes the same value as the [[geometric mean]].
 
The arithmetic-geometric mean can be used to compute [[Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integrals of the first kind]].  A modified arithmetic-geometric mean can be used to efficiently compute [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integrals of the second kind]].<ref>{{Citation |last=Adlaj |first=Semjon |title=An eloquent formula for the perimeter of an ellipse |url=http://www.ams.org/notices/201208/rtx120801094p.pdf |journal=Notices of the AMS |volume=59 |issue=8 |pages=1094–1099 |date=September 2012 |doi=10.1090/noti879 |accessdate=2013-12-14}}</ref>
 
==Proof of existence==
From [[inequality of arithmetic and geometric means]] we can conclude that:
 
:<math>g_n \leqslant a_n</math>
 
and thus
 
:<math>g_{n + 1} = \sqrt{g_n \cdot a_n} \geqslant \sqrt{g_n \cdot g_n} = g_n</math>
 
that is, the sequence {{math|''g<sub>n</sub>''}} is nondecreasing.
 
Furthermore, it is easy to see that it is also bounded above by the larger of {{math|''x''}} and {{math|''y''}} (which follows from the fact that both arithmetic and geometric means of two numbers both lie between them).  Thus by the [[monotone convergence theorem]] the sequence is convergent, so there exists a {{math|''g''}} such that:
 
:<math>\lim_{n\to \infty}g_n = g</math>
 
However, we can also see that:
 
:<math>a_n = \frac{g_{n + 1}^2}{g_n}</math>
 
and so:
 
:<math>\lim_{n\to \infty}a_n = \lim_{n\to \infty}\frac{g_{n + 1}^2}{g_{n}} = \frac{g^2}{g} = g</math>
 
[[Q.E.D.]]
 
==Proof of the integral-form expression==
This proof is given by Gauss.<ref name="BerggrenBorwein2004" />
Let
 
:<math>I(x,y) = \int_0^{\pi/2}\frac{d\theta}{\sqrt{x^2\cos^2\theta+y^2\sin^2\theta}},</math>
 
Changing the variable of integration to <math>\theta'</math>, where
 
:<math> \sin\theta = \frac{2x\sin\theta'}{(x+y)+(x-y)\sin^2\theta'}, </math>
 
gives
 
:<math>
\begin{align}
I(x,y) &= \int_0^{\pi/2}\frac{d\theta'}{\sqrt{\bigl(\frac12(x+y)\bigr)^2\cos^2\theta'+\bigl(\sqrt{xy}\bigr)^2\sin^2\theta'}}\\
      &= I\bigl(\tfrac12(x+y),\sqrt{xy}\bigr).
\end{align}
</math>
 
Thus, we have
 
:<math>
\begin{align}
I(x,y) &= I(a_1, g_1) = I(a_2, g_2) = \cdots\\
  &= I\bigl(M(x,y),M(x,y)\bigr) = \pi/\bigr(2M(x,y)\bigl).
\end{align}
</math>
The last equality comes from observing that <math>I(z,z) = \pi/(2z)</math>.
Finally, we obtain the desired result
 
:<math>M(x,y) = \pi/\bigl(2 I(x,y) \bigr). </math>
 
==See also==
* [[Generalized mean]]
* [[Inequality of arithmetic and geometric means]]
* [[Gauss–Legendre algorithm]]
 
==External links==
* [http://arithmeticgeometricmean.blogspot.de/ Arithmetic-Geometric Mean Calculator]
* [http://planetmath.org/convergenceofarithmeticgeometricmean/ Proof of convergence rate in PlanetMath]
 
==References==
{{More footnotes|date=October 2008}}
*{{cite journal|last = Adlaj|first = Semjon|title = An eloquent formula for the perimeter of an ellipse|journal = Notices of the AMS|volume = 59|issue = 8|pages = 1094–1099|date = September 2012|url = http://www.ams.org/notices/201208/rtx120801094p.pdf}}
* [[Jonathan Borwein]], [[Peter Borwein]], ''Pi and the AGM. A study in analytic number theory and computational complexity.'' Reprint of the 1987 original. Canadian Mathematical Society Series of Monographs and Advanced Texts, 4. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998. xvi+414 pp.&nbsp;ISBN 0-471-31515-X  {{MR|1641658}}
* [[Zoltán Daróczy]], [[Zsolt Páles]], ''Gauss-composition of means and the solution of the Matkowski–Suto problem.'' Publ. Math. Debrecen 61/1-2 (2002), 157–218.
*{{SpringerEOM|author=M. Hazewinkel|title=Arithmetic–geometric mean process|urlname=a/a130280}}
*{{mathworld|urlname=Arithmetic-GeometricMean|title=Arithmetic–Geometric mean}}
<references />
 
{{DEFAULTSORT:Arithmetic-Geometric Mean}}
[[Category:Means]]
[[Category:Special functions]]
[[Category:Elliptic functions]]
[[Category:Articles containing proofs]]

Latest revision as of 18:19, 10 December 2014

My name is Monique Mustar but everybody calls me Monique. I'm from United States. I'm studying at the university (2nd year) and I play the Cello for 6 years. Usually I choose songs from the famous films :).
I have two sister. I like Target Shooting, watching TV (Two and a Half Men) and College football.

Here is my webpage :: Manifesting Secrets Using LOA