Analytical hierarchy
In mathematics, the Bendixson–Dulac theorem on dynamical systems states that if there exists a function (called the Dulac function) such that the expression
has the same sign () almost everywhere in a simply connected region of the plane, then the plane autonomous system
has no periodic solutions lying entirely within the region.[1] "Almost everywhere" means everywhere except possibly in a set of measure 0, such as a point or line.
The theorem was first established by Swedish mathematician Ivar Bendixson in 1901 and further refined by French mathematician Henri Dulac in 1933 using Green's theorem.
Proof
Without loss of generality, let there exist a function such that
in simply connected region . Let be a closed trajectory of the plane autonomous system in . Let be the interior of . Then by Green's Theorem,
But on , and , so the integral evaluates to 0. This is a contradiction, so there can be no such closed trajectory .
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro. Template:Applied-math-stub
- ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534