Sophomore's dream
In mathematics, a Borel measure μ on n-dimensional Euclidean space Rn is called logarithmically concave (or log-concave for short) if, for any compact subsets A and B of Rn and 0 < λ < 1, one has
where λ A + (1 − λ) B denotes the Minkowski sum of λ A and (1 − λ) B.[1]
Examples
The Brunn-Minkowski inequality asserts that the Lebesgue measure is log-concave. The restriction of the Lebesgue measure to any convex set is also log-concave.
By a theorem of Borell,[2] a measure is log-concave if and only if it has a density with respect to the Lebesgue measure on some affine hyperplane, and this density is a logarithmically concave function. Thus, any Gaussian measure is log-concave.
The Prékopa–Leindler inequality shows that a convolution of log-concave measures is log-concave.
References
- ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - ↑ Template:Cite paper