Surgery theory

From formulasearchengine
Revision as of 22:44, 8 January 2014 by en>WangPublic (Add link.)
Jump to navigation Jump to search

In mathematics, the power iteration is an eigenvalue algorithm: given a matrix A, the algorithm will produce a number λ (the eigenvalue) and a nonzero vector v (the eigenvector), such that Av = λv. The algorithm is also known as the Von Mises iteration.[1]

The power iteration is a very simple algorithm. It does not compute a matrix decomposition, and hence it can be used when A is a very large sparse matrix. However, it will find only one eigenvalue (the one with the greatest absolute value) and it may converge only slowly.

The method

The power iteration algorithm starts with a vector b0, which may be an approximation to the dominant eigenvector or a random vector. The method is described by the iteration

bk+1=AbkAbk.

So, at every iteration, the vector bk is multiplied by the matrix A and normalized.

Under the assumptions:

  • A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues
  • The starting vector b0 has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.

then:

  • A subsequence of (bk) converges to an eigenvector associated with the dominant eigenvalue

Note that the sequence (bk) does not necessarily converge. It can be shown that:
bk=eiϕkv1+rk where: v1 is an eigenvector associated with the dominant eigenvalue, and rk0. The presence of the term eiϕk implies that (bk) does not converge unless eiϕk=1 Under the two assumptions listed above, the sequence (μk) defined by: μk=bk*Abkbk*bk converges to the dominant eigenvalue.

This can be run as a simulation program with the following simple algorithm:

for each(''simulation'') {
    // calculate the matrix-by-vector product Ab
    for(i=0; i<n; i++) {
         tmp[i] = 0;
         for (j=0; j<n; j++)
              tmp[i] += A[i][j] * b[j]; // dot product of ith col in A with b
    }

    // calculate the length of the resultant vector
    norm_sq=0;
    for (k=0; k<n; k++)
         norm_sq += tmp[k]*tmp[k]; 
    norm = sqrt(norm_sq);

    // normalize b to unit vector for next iteration
    b = tmp/norm;
}

The value of norm converges to the absolute value of the dominant eigenvalue, and the vector b to an associated eigenvector.

Note: The above code assumes real A,b. To handle complex; A[i][j] becomes conj(A[i][j]), and tmp[k]*tmp[k] becomes conj(tmp[k])*tmp[k]

This algorithm is the one used to calculate such things as the Google PageRank.

The method can also be used to calculate the spectral radius of a matrix by computing the Rayleigh quotient

bkAbkbkbk=bk+1bkbkbk.

Analysis

Let A be decomposed into its Jordan canonical form: A=VJV1, where the first column of V is an eigenvector of A corresponding to the dominant eigenvalue λ1. Since the dominant eigenvalue of A is unique, the first Jordan block of J is the 1×1 matrix [λ1], where λ1 is the largest eigenvalue of A in magnitude. The starting vector b0 can be written as a linear combination of the columns of V: b0=c1v1+c2v2++cnvn. By assumption, b0 has a nonzero component in the direction of the dominant eigenvalue, so c10.

The computationally useful recurrence relation for bk+1 can be rewritten as: bk+1=AbkAbk=Ak+1b0Ak+1b0, where the expression: Ak+1b0Ak+1b0 is more amenable to the following analysis.
bk=Akb0Akb0=(VJV1)kb0(VJV1)kb0=VJkV1b0VJkV1b0=VJkV1(c1v1+c2v2++cnvn)VJkV1(c1v1+c2v2++cnvn)=VJk(c1e1+c2e2++cnen)VJk(c1e1+c2e2++cnen)=(λ1|λ1|)kc1|c1|v1+1c1V(1λ1J)k(c2e2++cnen)v1+1c1V(1λ1J)k(c2e2++cnen)
The expression above simplifies as k
(1λ1J)k=[[1](1λ1J2)k(1λ1Jm)k][100] as k.
The limit follows from the fact that the eigenvalue of 1λ1Ji is less than 1 in magnitude, so (1λ1Ji)k0 as k
It follows that:
1c1V(1λ1J)k(c2e2++cnen)0 as k
Using this fact, bk can be written in a form that emphasizes its relationship with v1 when k is large:
bk=(λ1|λ1|)kc1|c1|v1+1c1V(1λ1J)k(c2e2++cnen)v1+1c1V(1λ1J)k(c2e2++cnen)=eiϕkc1|c1|v1+rk where eiϕk=(λ1/|λ1|)k and rk0 as k
The sequence (bk) is bounded, so it contains a convergent subsequence. Note that the eigenvector corresponding to the dominant eigenvalue is only unique up to a scalar, so although the sequence (bk) may not converge, bk is nearly an eigenvector of A for large k.

Alternatively, if A is diagonalizable, then the following proof yields the same result
Let λ1, λ2, …, λm be the m eigenvalues (counted with multiplicity) of A and let v1, v2, …, vm be the corresponding eigenvectors. Suppose that λ1 is the dominant eigenvalue, so that |λ1|>|λj| for j>1.

The initial vector b0 can be written:

b0=c1v1+c2v2++cmvm.

If b0 is chosen randomly (with uniform probability), then c1 ≠ 0 with probability 1. Now,

Akb0=c1Akv1+c2Akv2++cmAkvm=c1λ1kv1+c2λ2kv2++cmλmkvm=c1λ1k(v1+c2c1(λ2λ1)kv2++cmc1(λmλ1)kvm).

The expression within parentheses converges to v1 because |λj/λ1|<1 for j>1. On the other hand, we have

bk=Akb0Akb0.

Therefore, bk converges to (a multiple of) the eigenvector v1. The convergence is geometric, with ratio

|λ2λ1|,

where λ2 denotes the second dominant eigenvalue. Thus, the method converges slowly if there is an eigenvalue close in magnitude to the dominant eigenvalue.

Applications

Although the power iteration method approximates only one eigenvalue of a matrix, it remains useful for certain computational problems. For instance, Google uses it to calculate the PageRank of documents in their search engine.[2] For matrices that are well-conditioned and as sparse as the Web matrix, the power iteration method can be more efficient than other methods of finding the dominant eigenvector.

Some of the more advanced eigenvalue algorithms can be understood as variations of the power iteration. For instance, the inverse iteration method applies power iteration to the matrix A1. Other algorithms look at the whole subspace generated by the vectors bk. This subspace is known as the Krylov subspace. It can be computed by Arnoldi iteration or Lanczos iteration. Another variation of the power method that simultaneously gives n eigenvalues and eigenfunctions, as well as accelerated convergence as |λn+1/λ1|, is "Multiple extremal eigenpairs by the power method" in the Journal of Computational Physics Volume 227 Issue 19, October, 2008, Pages 8508-8522 (Also see pdf below for Los Alamos National Laboratory report LA-UR-07-4046)

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

  • Power method, part of lecture notes on numerical linear algebra by E. Bruce Pitman, State University of New York.
  • Module for the Power Method
  • [1] Los Alamos report LA-UR-07-4046 ""Multiple extremal eigenpairs by the power method"


Template:Numerical linear algebra 30 year-old Entertainer or Range Artist Wesley from Drumheller, really loves vehicle, property developers properties for sale in singapore singapore and horse racing. Finds inspiration by traveling to Works of Antoni Gaudí.

  1. R. von Mises and H. Pollaczek-Geiringer, Praktische Verfahren der Gleichungsauflösung, ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 9, 152-164 (1929).
  2. Template:Cite article