Rectified 5-cell

From formulasearchengine
Revision as of 13:38, 23 March 2013 by en>Addbot (Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q7303156)
Jump to navigation Jump to search

In computer science, group codes are a type of code. Group codes consist of n linear block codes which are subgroups of Gn, where G is a finite Abelian group.

A systematic group code C is a code over Gn of order |G|k defined by nk homomorphisms which determine the parity check bits. The remaining k bits are the information bits themselves.

Construction

Group codes can be constructed by special generator matrices which resemble generator matrices of linear block codes except that the elements of those matrices are endomorphisms of the group instead of symbols from the code's alphabet. For example, consider the generator matrix

G=((0011)(0101)(1101)(0011)(1111)(0000))

The elements of this matrix are 2×2 matrices which are endomorphisms. In this scenario, each codeword can be represented as g1m1g2m2...grmr where g1,...gr are the generators of G.

References

  • Template:Cite doi
  • G. D. Forney, M. Trott, Template:Doi-inline, IEEE Trans. Inform. theory, Vol 39 (1993), pages 1491-1593.
  • V. V. Vazirani, Huzur Saran and B. S. Rajan, Template:Doi-inline, IEEE Trans. Inform. Theory 42, No.6, (1996), 1839-1854.
  • A. A. Zain, B. Sundar Rajan, "Dual codes of Systematic Group Codes over Abelian Groups", Appl. Algebra Eng. Commun. Comput. 8(1): 71-83 (1996).