Solid partition

From formulasearchengine
Revision as of 01:06, 22 December 2013 by en>Sgiitm (Equivalence of the two representations)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Multiple issues

The Volkenborn-integral is an integral for p-adic functions.

Definition

Suppose

f:pp

is a function from the p-adic integers to the p-adic rationals, then, under certain conditions, the Volkenborn-Integral is defined by

pf(x)dx=limn1pnx=0pn1f(x).

More generally, if

Rn={x=i=rn1bixi|bi=0,,p1 for r<n}

then

Kf(x)dx=limn1pnxRnKf(x).

This integral was defined by Arnt Volkenborn.

Examples

p1dx=1
pxdx=12
px2dx=16
pxkdx=Bk , the k-th Bernoulli number

The above four examples can be easily checked by direct use of the definition and Faulhaber's formula.

p(xk)dx=(1)kk+1
p(1+a)xdx=log(1+a)a
peaxdx=aea1

The last two examples can be formally checked by expanding in the Taylor series and integrating term-wise.

plogp(x+u)du=ψp(x)

with logp the p-adic logarithmic function and ψp the p-adic digamma function


Properties

pf(x+m)dx=pf(x)dx+x=0m1f(x)

From this it follows that the Volkenborn-integral is not translation invariant.

If Pt=ptp then

Ptf(x)dx=1ptpf(ptx)dx


See also

References

  • Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen I. In: Manuscripta Mathematica. Bd. 7, Nr. 4, 1972, [1]
  • Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen II. In: Manuscripta Mathematica. Bd. 12, Nr. 1, 1974, [2]
  • Henri Cohen, "Number Theory", Volume II, page 276


Template:Analysis-stub