Unisolvent functions
Template:Notability In mathematics — specifically, in probability theory — the concentration dimension of a Banach space-valued random variable is a numerical measure of how “spread out” the random variable is compared to the norm on the space.
Definition
Let (B, || ||) be a Banach space and let X be a Gaussian random variable taking values in B. That is, for every linear functional ℓ in the dual space B∗, the real-valued random variable ⟨ℓ, X⟩ has a normal distribution. Define
Then the concentration dimension d(X) of X is defined by
Examples
- If B is n-dimensional Euclidean space Rn with its usual Euclidean norm,Template:Clarify and X is a standard Gaussian random variable, then σ(X) = 1 and E[||X||2] = n, so d(X) = n.
- If B is Rn with the supremum norm, then σ(X) = 1 but E[||X||2] (and hence d(X)) is of the order of log(n).
References
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 (See chapter 9)