Normalization (statistics)

From formulasearchengine
Revision as of 03:55, 23 January 2014 by en>Jacobkhed (Other Types: clarified)
Jump to navigation Jump to search

In mathematics, the Minkowski–Hlawka theorem is a result on the lattice packing of hyperspheres in dimension n > 1. It states that there is a lattice in Euclidean space of dimension n, such that the corresponding best packing of hyperspheres with centres at the lattice points has density Δ satisfying

Δζ(n)2n1,

with ζ the Riemann zeta function. Here as n → ∞, ζ(n) → 1. The proof of this theorem is nonconstructive, however, and it is still not known how to construct lattices with packing densities exceeding this bound for arbitrary n.

This is a result of Hermann Minkowski (1905, not published) and Edmund Hlawka (1944). The result is related to a linear lower bound for the Hermite constant.

See also

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534