Two-port network: Difference between revisions
en>Chetvorno Added example that transistors are often characterized by their h-parameters |
|||
Line 1: | Line 1: | ||
In [[mathematics]], '''Wallis' product''' for [[Pi|π]], written down in 1655 by [[John Wallis]], states that | |||
:<math> | |||
\prod_{n=1}^{\infty} \left(\frac{2n}{2n-1} \cdot \frac{2n}{2n+1}\right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2} | |||
</math> | |||
==Derivation== | |||
Wallis did not derive this [[infinite product]] as it is done in calculus books today, by comparing <math>\scriptstyle \int_0^\pi \sin^nxdx</math> for even and odd values of ''n'', and noting that for large ''n'', increasing ''n'' by 1 results in a change that becomes ever smaller as ''n'' increases. Since [[infinitesimal calculus]] as we know it did not yet exist then, and the [[mathematical analysis]] of the time was inadequate to discuss the convergence issues, this was a hard piece of research, and tentative as well. | |||
Wallis' product is, in retrospect, an easy corollary of the later [[Infinite product#Product representations of functions|Euler formula]] for the [[sine function]]. | |||
== Proof using Euler's infinite product for the sine function<ref name=WallisFormula>{{cite web|url=http://mathworld.wolfram.com/WallisFormula.html|title=Wallis Formula}}</ref> == | |||
:<math>\frac{\sin x}{x} = \prod_{n=1}^\infty\left(1 - \frac{x^2}{n^2\pi^2}\right)</math> | |||
Let ''x'' = {{frac|π|2}}: | |||
:<math>\begin{align} | |||
\Rightarrow\frac{2}{\pi} &= \prod_{n=1}^{\infty} \left(1 - \frac{1}{4n^2}\right) \\ | |||
\Rightarrow\frac{\pi}{2} &= \prod_{n=1}^{\infty} \left(\frac{4n^2}{4n^2 - 1}\right) \\ | |||
&= \prod_{n=1}^{\infty} \left(\frac{2n}{2n-1}\cdot\frac{2n}{2n+1}\right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots | |||
\end{align} | |||
</math> | |||
== Proof using integration<ref>{{cite web|url=http://www.sosmath.com/calculus/integration/powerproduct/problem/problem.html|title=Integrating Powers and Product of Sines and Cosines: Challenging Problems}}</ref> == | |||
Let: | |||
:<math>I(n) = \int_0^\pi \sin^nxdx</math> | |||
(a form of the [[Wallis' integrals]]). | |||
Integrate by parts: | |||
:<math>\begin{align} | |||
u &= \sin^{n-1}x \\ | |||
\Rightarrow du &= (n-1) \sin^{n-2}x \cos x dx \\ | |||
dv &= \sin x dx \\ | |||
\Rightarrow v &= -\cos x | |||
\end{align}</math> | |||
:<math>\begin{align} | |||
\Rightarrow I(n) &= \int_0^\pi \sin^nxdx=\int_0^\pi u dv = uv |_{x=0}^{x=\pi}-\int_0^\pi v du \\ | |||
{} &= -\sin^{n-1}x\cos x |_{x=0}^{x=\pi} - \int_0^\pi - \cos x(n-1) \sin^{n-2}x \cos x dx \\ | |||
{} &= 0 - (n-1) \int_0^\pi -\cos^2x \sin^{n-2}x dx, n > 1 \\ | |||
{} &= (n - 1) \int_0^\pi (1-\sin^2 x) \sin^{n-2}x dx \\ | |||
{} &= (n - 1) \int_0^\pi \sin^{n-2}x dx - (n - 1) \int_0^\pi \sin^{n}x dx \\ | |||
{} &= (n - 1) I(n-2)-(n-1) I(n) \\ | |||
{} &= \frac{n-1}{n} I(n-2) \\ | |||
\Rightarrow \frac{I(n)}{I(n-2)} | |||
&= \frac{n-1}{n} \\ | |||
\Rightarrow \frac{I(2n-1)}{I(2n+1)} | |||
&=\frac{2n+1}{2n} | |||
\end{align}</math> | |||
This result will be used below: | |||
:<math>\begin{align} | |||
I(0) &= \int_0^\pi dx = x|_0^\pi = \pi \\ | |||
I(1) &= \int_0^\pi \sin xdx = -\cos x|_0^\pi = (-\cos \pi)-(-\cos 0) = -(-1)-(-1) = 2 \\ | |||
I(2n) &= \int_0^\pi \sin^{2n}xdx = \frac{2n-1}{2n}I(2n-2) = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2}I(2n-4) | |||
\end{align}</math> | |||
Repeating the process, | |||
:<math>=\frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot \cdots \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} I(0)=\pi \prod_{k=1}^n \frac{2k-1}{2k}</math> | |||
:<math>I(2n+1)=\int_0^\pi \sin^{2n+1}xdx=\frac{2n}{2n+1}I(2n-1)=\frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1}I(2n-3)</math> | |||
Repeating the process, | |||
:<math>=\frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1} \cdot \frac{2n-4}{2n-3} \cdot \cdots \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} I(1)=2 \prod_{k=1}^n \frac{2k}{2k+1}</math> | |||
:<math>\sin^{2n+1}x \le \sin^{2n}x \le \sin^{2n-1}x, 0 \le x \le \pi</math> | |||
:<math>\Rightarrow I(2n+1) \le I(2n) \le I(2n-1)</math> | |||
:<math>\Rightarrow 1 \le \frac{I(2n)}{I(2n+1)} \le \frac{I(2n-1)}{I(2n+1)}=\frac{2n+1}{2n}</math>, from above results. | |||
By the [[squeeze theorem]], | |||
:<math>\Rightarrow \lim_{n\rightarrow\infty} \frac{I(2n)}{I(2n+1)}=1</math> | |||
:<math>\lim_{n\rightarrow\infty} \frac{I(2n)}{I(2n+1)}=\frac{\pi}{2} \lim_{n\rightarrow\infty} \prod_{k=1}^n \left(\frac{2k-1}{2k} \cdot \frac{2k+1}{2k}\right)=1</math> | |||
:<math>\Rightarrow \frac{\pi}{2}=\prod_{k=1}^\infty \left(\frac{2k}{2k-1} \cdot \frac{2k}{2k+1}\right)=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \cdots</math> | |||
== Relation to Stirling's approximation== | |||
[[Stirling's approximation]] for ''n''! asserts that | |||
:<math>n! = \sqrt {2\pi n} {\left(\frac{n}{e}\right)}^n \left[1 + O\left(\frac{1}{n}\right) \right]</math> | |||
as ''n'' → ∞. Consider now the finite approximations to the Wallis product, obtained by taking the first ''k'' terms in the [[Product (mathematics)|product]]: | |||
:<math>p_k = \prod_{n=1}^{k} \frac{2n}{2n - 1}\frac{2n}{2n + 1}</math> | |||
''p<sub>k</sub>'' can be written as | |||
:<math>\begin{align} | |||
p_k &= {1 \over {2k + 1}} \prod_{n=1}^{k} \frac{(2n)^4}{[(2n)(2n - 1)]^2} \\ | |||
&= {1 \over {2k + 1}} \cdot {{2^{4k}\,(k!)^4} \over {[(2k)!]^2}} | |||
\end{align}</math> | |||
Substituting Stirling's approximation in this expression (both for ''k''! and (2''k'')!) one can deduce (after a short calculation) that ''p<sub>k</sub>'' converges to {{frac|π|2}} as ''k'' → ∞. | |||
==ζ'(0)<ref name="WallisFormula"/>== | |||
The [[Riemann zeta function]] and the [[Dirichlet eta function]] can be defined: | |||
:<math>\begin{align} | |||
\zeta(s) &= \sum_{n=1}^\infty \frac{1}{n^s}, \Re(s)>1 \\ | |||
\eta(s) &= (1-2^{1-s})\zeta(s) \\ | |||
&= \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}, \Re(s)>0 | |||
\end{align}</math> | |||
Applying an Euler transform to the latter series, the following is obtained: | |||
:<math>\begin{align} | |||
\eta(s) &= \frac{1}{2}+\frac{1}{2} \sum_{n=1}^\infty (-1)^{n-1}\left[\frac{1}{n^s}-\frac{1}{(n+1)^s}\right], \Re(s)>-1 \\ | |||
\Rightarrow \eta'(s) &= (1-2^{1-s})\zeta'(s)+2^{1-s} (\ln 2) \zeta(s) \\ | |||
&= -\frac{1}{2} \sum_{n=1}^\infty (-1)^{n-1}\left[\frac{\ln n}{n^s}-\frac{\ln (n+1)}{(n+1)^s}\right], \Re(s)>-1 | |||
\end{align}</math> | |||
:<math>\begin{align} | |||
\Rightarrow \eta'(0) &= -\zeta'(0) - \ln 2 = -\frac{1}{2} \sum_{n=1}^\infty (-1)^{n-1}\left[\ln n-\ln (n+1)\right] \\ | |||
&= -\frac{1}{2} \sum_{n=1}^\infty (-1)^{n-1}\ln \frac{n}{n+1} \\ | |||
&= -\frac{1}{2} \left(\ln \frac{1}{2} - \ln \frac{2}{3} + \ln \frac{3}{4} - \ln \frac{4}{5} + \ln \frac{5}{6} - \cdots\right) \\ | |||
&= \frac{1}{2} \left(\ln \frac{2}{1} + \ln \frac{2}{3} + \ln \frac{4}{3} + \ln \frac{4}{5} + \ln \frac{6}{5} + \cdots\right) \\ | |||
&= \frac{1}{2} \ln\left(\frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\frac{4}{5}\cdot\cdots\right) = \frac{1}{2} \ln\frac{\pi}{2} \\ | |||
\Rightarrow \zeta'(0) &= -\frac{1}{2} \ln\left(2 \pi\right) | |||
\end{align}</math> | |||
==See also== | |||
*[[Viète's formula]], a different infinite product formula for π | |||
*[[Leibniz formula for π]], an infinite sum that can be converted into an infinite [[Euler product]] for π | |||
*[[Wallis sieve]] | |||
==External links== | |||
{{Reflist}} | |||
[[Category:Articles containing proofs]] | |||
[[Category:Pi algorithms]] |
Revision as of 00:26, 13 January 2014
In mathematics, Wallis' product for π, written down in 1655 by John Wallis, states that
Derivation
Wallis did not derive this infinite product as it is done in calculus books today, by comparing for even and odd values of n, and noting that for large n, increasing n by 1 results in a change that becomes ever smaller as n increases. Since infinitesimal calculus as we know it did not yet exist then, and the mathematical analysis of the time was inadequate to discuss the convergence issues, this was a hard piece of research, and tentative as well.
Wallis' product is, in retrospect, an easy corollary of the later Euler formula for the sine function.
Proof using Euler's infinite product for the sine function[1]
Let x = Template:Frac:
Proof using integration[2]
Let:
(a form of the Wallis' integrals). Integrate by parts:
This result will be used below:
Repeating the process,
Repeating the process,
By the squeeze theorem,
Relation to Stirling's approximation
Stirling's approximation for n! asserts that
as n → ∞. Consider now the finite approximations to the Wallis product, obtained by taking the first k terms in the product:
pk can be written as
Substituting Stirling's approximation in this expression (both for k! and (2k)!) one can deduce (after a short calculation) that pk converges to Template:Frac as k → ∞.
ζ'(0)[1]
The Riemann zeta function and the Dirichlet eta function can be defined:
Applying an Euler transform to the latter series, the following is obtained:
See also
- Viète's formula, a different infinite product formula for π
- Leibniz formula for π, an infinite sum that can be converted into an infinite Euler product for π
- Wallis sieve
External links
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.