Cramér–Rao bound: Difference between revisions
en>Jfessler →Multivariate case: added simpler lower bound based on diagonal element, needs citation properly formatted. |
en>ChrisGualtieri m →Normal variance with known mean: General Fixes + CheckWiki 75 using AWB |
||
Line 1: | Line 1: | ||
In [[abstract algebra]] and [[number theory]], '''Kummer theory''' provides a description of certain types of [[field extension]]s involving the [[adjunction (field theory)|adjunction]] of ''n''th roots of elements of the base [[field (mathematics)|field]]. The theory was originally developed by [[Ernst Kummer|Ernst Eduard Kummer]] around the 1840s in his pioneering work on [[Fermat's last theorem]]. The main statements do not depend on the nature of the field - apart from its [[characteristic of a field|characteristic]], which should not divide the integer ''n'' – and therefore belong to abstract algebra. The theory of cyclic extensions of the field ''K'' when the characteristic of ''K'' does divide ''n'' is called [[Artin–Schreier theory]]. | |||
Kummer theory is basic, for example, in [[class field theory]] and in general in understanding [[abelian extension]]s; it says that in the presence of enough roots of unity, cyclic extensions can be understood in terms of extracting roots. The main burden in class field theory is to dispense with extra roots of unity ('descending' back to smaller fields); which is something much more serious. | |||
== Kummer extensions == | |||
A '''Kummer extension''' is a field extension ''L/K'', where for some given integer ''n'' > 1 we have | |||
*''K'' contains ''n'' distinct ''n''th [[root of unity|roots of unity]] (i.e., roots of ''X''<sup>n</sup>−1) | |||
*''L''/''K'' has [[abelian group|abelian]] [[Galois group]] of [[exponent (group theory)|exponent]] ''n''. | |||
For example, when ''n'' = 2, the first condition is always true if ''K'' has [[characteristic (algebra)|characteristic]] ≠ 2. The Kummer extensions in this case include '''quadratic extensions''' ''L'' = ''K''(√a) where ''a'' in ''K'' is a non-square element. By the usual solution of [[quadratic equation]]s, any extension of degree 2 of ''K'' has this form. The Kummer extensions in this case also include '''biquadratic extensions''' and more general '''multiquadratic extensions'''. When ''K'' has characteristic 2, there are no such Kummer extensions. | |||
Taking ''n'' = 3, there are no degree 3 Kummer extensions of the [[rational number]] field '''Q''', since for three cube roots of 1 [[complex number]]s are required. If one takes ''L'' to be the splitting field of ''X''<sup>''3''</sup> − ''a'' over '''Q''', where ''a'' is not a cube in the rational numbers, then ''L'' contains a subfield ''K'' with three cube roots of 1; that is because if α and β are roots of the cubic polynomial, we shall have (α/β)<sup>3</sup> =1 and the cubic is a [[separable polynomial]]. Then ''L/K'' is a Kummer extension. | |||
More generally, it is true that when ''K'' contains ''n'' distinct ''n''th roots of unity, which implies that the characteristic of ''K'' doesn't divide ''n'', then adjoining to ''K'' the ''n''th root of any element ''a'' of ''K'' creates a Kummer extension (of degree ''m'', for some ''m'' dividing ''n''). As the [[splitting field]] of the polynomial ''X''<sup>''n''</sup> − ''a'', the Kummer extension is necessarily [[Galois extension|Galois]], with Galois group that is [[cyclic group|cyclic]] of order ''m''. It is easy to track the Galois action via the root of unity in front of <math>\sqrt[n]{a}.</math> | |||
== Kummer theory == | |||
'''Kummer theory''' provides converse statements. When ''K'' contains ''n'' distinct ''n''th roots of unity, it states that any [[abelian extension]] of ''K'' of exponent dividing ''n'' is formed by extraction of roots of elements of ''K''. Further, if ''K''<sup>×</sup> denotes the multiplicative group of non-zero elements of ''K'', abelian extensions of ''K'' of exponent ''n'' correspond bijectively with subgroups of | |||
:<math>K^{\times}/(K^{\times})^n,\,\!</math> | |||
that is, elements of ''K''<sup>×</sup> [[Modular arithmetic|modulo]] ''n''th powers. The correspondence can be described explicitly as follows. Given an abelian subgroup | |||
:<math>\Delta \subseteq K^{\times}/(K^{\times})^n, \,\!</math> | |||
the corresponding extension is given by | |||
:<math>K(\Delta^{1/n}),\,\!</math> | |||
that is, by adjoining ''n''<sup>th</sup> roots of elements of Δ to ''K''. Conversely, if ''L'' is a Kummer extension of ''K'', then Δ is recovered by the rule | |||
:<math>\Delta = K^\times \cap (L^\times)^n.\,\!</math> | |||
In this case there is an isomorphism | |||
:<math>\Delta \cong \operatorname{Hom}(\operatorname{Gal}(L/K), \mu_n)</math> | |||
given by | |||
:<math>a \mapsto \biggl(\sigma \mapsto \frac{\sigma(\alpha)}{\alpha}\biggr),</math> | |||
where α is any ''n''th root of ''a'' in ''L''. | |||
== Generalizations == | |||
Suppose that ''G'' is a profinite group acting on a module ''A'' with a surjective homomorphism π from the ''G''-module ''A'' to itself. Suppose also that ''G'' acts trivially on the kernel ''C'' of π and that the first cohomology group H<sup>1</sup>(''G'',''A'') is trivial. Then the exact sequence of group cohomology shows that there is an isomorphism between ''A''<sup>''G''</sup>/π(''A''<sup>''G''</sup>) and Hom(''G'',''C''). | |||
Kummer theory is the special case of this when ''A'' is the multiplicative group of the separable closure of a field ''k'', ''G'' is the Galois group, π is the ''n''th power map, and ''C'' the group of ''n''th roots of unity. | |||
[[Artin–Schreier theory]] is the special case when ''A'' is the additive group of the separable closure of a field ''k'' of positive characteristic ''p'', ''G'' is the Galois group, π is the Frobenius map, and ''C'' the finite field of order ''p''. Taking ''A'' to be a ring of truncated Witt vectors gives Witt's generalization of Artin–Schreier theory to extensions of exponent dividing ''p''<sup>''n''</sup>. | |||
== See also == | |||
* [[Quadratic field]] | |||
==References== | |||
* {{Springer|title = Kummer extension|id = k/k055960}} | |||
* [[Bryan John Birch|Bryan Birch]], "Cyclotomic fields and Kummer extensions", in [[J.W.S. Cassels]] and [[A. Frohlich]] (edd), ''Algebraic number theory'', [[Academic Press]], 1973. Chap.III, pp. 85–93. | |||
[[Category:Field theory]] | |||
[[Category:Algebraic number theory]] |
Revision as of 01:14, 28 October 2013
In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's last theorem. The main statements do not depend on the nature of the field - apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.
Kummer theory is basic, for example, in class field theory and in general in understanding abelian extensions; it says that in the presence of enough roots of unity, cyclic extensions can be understood in terms of extracting roots. The main burden in class field theory is to dispense with extra roots of unity ('descending' back to smaller fields); which is something much more serious.
Kummer extensions
A Kummer extension is a field extension L/K, where for some given integer n > 1 we have
- K contains n distinct nth roots of unity (i.e., roots of Xn−1)
- L/K has abelian Galois group of exponent n.
For example, when n = 2, the first condition is always true if K has characteristic ≠ 2. The Kummer extensions in this case include quadratic extensions L = K(√a) where a in K is a non-square element. By the usual solution of quadratic equations, any extension of degree 2 of K has this form. The Kummer extensions in this case also include biquadratic extensions and more general multiquadratic extensions. When K has characteristic 2, there are no such Kummer extensions.
Taking n = 3, there are no degree 3 Kummer extensions of the rational number field Q, since for three cube roots of 1 complex numbers are required. If one takes L to be the splitting field of X3 − a over Q, where a is not a cube in the rational numbers, then L contains a subfield K with three cube roots of 1; that is because if α and β are roots of the cubic polynomial, we shall have (α/β)3 =1 and the cubic is a separable polynomial. Then L/K is a Kummer extension.
More generally, it is true that when K contains n distinct nth roots of unity, which implies that the characteristic of K doesn't divide n, then adjoining to K the nth root of any element a of K creates a Kummer extension (of degree m, for some m dividing n). As the splitting field of the polynomial Xn − a, the Kummer extension is necessarily Galois, with Galois group that is cyclic of order m. It is easy to track the Galois action via the root of unity in front of
Kummer theory
Kummer theory provides converse statements. When K contains n distinct nth roots of unity, it states that any abelian extension of K of exponent dividing n is formed by extraction of roots of elements of K. Further, if K× denotes the multiplicative group of non-zero elements of K, abelian extensions of K of exponent n correspond bijectively with subgroups of
that is, elements of K× modulo nth powers. The correspondence can be described explicitly as follows. Given an abelian subgroup
the corresponding extension is given by
that is, by adjoining nth roots of elements of Δ to K. Conversely, if L is a Kummer extension of K, then Δ is recovered by the rule
In this case there is an isomorphism
given by
where α is any nth root of a in L.
Generalizations
Suppose that G is a profinite group acting on a module A with a surjective homomorphism π from the G-module A to itself. Suppose also that G acts trivially on the kernel C of π and that the first cohomology group H1(G,A) is trivial. Then the exact sequence of group cohomology shows that there is an isomorphism between AG/π(AG) and Hom(G,C).
Kummer theory is the special case of this when A is the multiplicative group of the separable closure of a field k, G is the Galois group, π is the nth power map, and C the group of nth roots of unity. Artin–Schreier theory is the special case when A is the additive group of the separable closure of a field k of positive characteristic p, G is the Galois group, π is the Frobenius map, and C the finite field of order p. Taking A to be a ring of truncated Witt vectors gives Witt's generalization of Artin–Schreier theory to extensions of exponent dividing pn.
See also
References
- Other Sports Official Kull from Drumheller, has hobbies such as telescopes, property developers in singapore and crocheting. Identified some interesting places having spent 4 months at Saloum Delta.
my web-site http://himerka.com/ - Bryan Birch, "Cyclotomic fields and Kummer extensions", in J.W.S. Cassels and A. Frohlich (edd), Algebraic number theory, Academic Press, 1973. Chap.III, pp. 85–93.