Real projective plane: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Quondum
m Lines joining points and intersection of lines (using duality): Replacing TEX symbol \top with \mathrm{T} as per MOS:MATH#Notational conventions for transpose
 
en>Steelpillow
The projective hemisphere: disambig grammar
Line 1: Line 1:
== Chixuedongfu北築山、秦ゆう正ボレースタンド ==
In mathematics, the '''random Fibonacci sequence''' is a stochastic analogue of the [[Fibonacci sequence]] defined by the [[recurrence relation]] ''f''<sub>''n''</sub> = ''f''<sub>''n''−1</sub> ± ''f''<sub>''n''−2</sub>, where the signs + or − are chosen [[Bernoulli distribution|at random]] with equal probability 1/2, [[Independence (probability theory)|independently]] for different ''n''. By a theorem of [[Harry Kesten]] and [[Hillel Furstenberg]], random recurrent sequences of this kind grow at a certain [[exponential growth|exponential rate]], but it is difficult to compute the rate explicitly. In 1999, [[Divakar Viswanath]] showed that the growth rate of the random Fibonacci sequence is equal to 1.1319882487943…, a [[mathematical constant]] that was later named Viswanath's constant.<ref>{{cite doi|10.1090/S0025-5718-99-01145-X}}</ref><ref>{{cite doi|10.1023/A:1014702122205}}</ref><ref>{{cite doi|10.1016/j.jnt.2006.01.002}} {{arxiv|math.NT/0510159}}</ref>


があり、スピーカー、彼は緑のヒョンチョンチョンは彼に近いLaoguiとチャールズハング強度が気にしないだろうと述べていることを聞いたからです。<br>現時点秦ゆうで<br>、侯飛、三兄弟心に黒い羽は、一般的な文字は、彼らに脅威がなく、今では最大の敵は、残りの9 [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_13.php クリスチャンルブタン通販] 8悪悪紫龍の寺院です。 「ブラック、あなたは退却を行く元英を洗練開始しました。その後、いくつかの私たちの生活の中での時間とよりエキサイティングが起こるのだろう、低強度は、そのフィールドのイベントに参加する資格がないかもしれません。 '秦ゆう口笑顔で、目Limang光った。秦三兄弟、両方の将軍秦。今日の皇帝秦鄭は、時間までの冷酷なわずかな慈悲がないでしょう。秦Yuは彼が今考慮し、最悪の場合、秦ゆう、何を恐れて考えられ、最悪の場合を取り、する必要のあるタイムに関係なく、また、将来の期待、の場合ではありません。ブラックフェザー。弱いなしの侯飛、あらゆる混練柿。 [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_13.php クリスチャンルブタン通販] 「私たちは自由に三兄弟をこねるしたい、私たちは彼の手が切断されたことを注意しなければならない。 [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_14.php クリスチャンルブタン メンズ 靴] '秦Yuは外部に見える。<br><br> [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_9.php クリスチャンルブタン メンズ 通販]......<br>次<br>Chixuedongfu北築山、秦ゆう正ボレースタンド [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_12.php 靴 クリスチャンルブタン]。
== Description ==
相关的主题文章:
The random Fibonacci sequence is an integer random sequence  {''f''<sub>''n''</sub>}, where ''f''<sub>1</sub>&nbsp;=&nbsp;''f''<sub>2</sub>&nbsp;=&nbsp;1 and the subsequent terms are determined from the random recurrence relation
<ul>
 
  <li>[http://dgxcxx.com/plus/feedback.php?aid=118 http://dgxcxx.com/plus/feedback.php?aid=118]</li>
 
  <li>[http://www.adsrack.com/article/56274/minnesota-state-remains/index.cgi http://www.adsrack.com/article/56274/minnesota-state-remains/index.cgi]</li>
 
  <li>[http://www.zpr8.com/thread-26611-1-1.html http://www.zpr8.com/thread-26611-1-1.html]</li>
 
</ul>


== は '周フオは、これはあなたの土地の力とは ==
:<math>
f_n = \begin{cases}
f_{n-1}+f_{n-2}, & \text{ with probability 1/2}; \\
f_{n-1}-f_{n-2}, & \text{ with probability 1/2}.
\end{cases}
</math>


そのパワーのライブこの雷起源。 '周フオはそれを信じることができなかった。<br><br>しかし、6盛黄とどのように秦ゆうqingpao知ることは、実際にそれ自体が第一級の無名Lingbaoです [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_14.php クリスチャンルブタン メンズ 靴]。今まで霊の世界から生まれた、第一級の無名Lingbao壊れた状況がなかった [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_3.php クリスチャンルブタン 店舗]。沸騰文学101​​du [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_10.php クリスチャンルブタン ブーツ].netへようこそ<br><br>結局のところ、あまりにもハードまでファーストクラスの無名Lingbao。<br><br>qingpao秦Yuの身体の防御、自然に、非常に恐ろしい。そして......攻撃者はqingpao秦ゆうの断片化を行うことができたとしても、qingpao秦ゆう孟は冷ガスに変換することができます。<br><br>不滅!<br><br>は '周フオは、これはあなたの土地の力とは?紳士盛黄、あなたはハワードは私に対して一週間に秦ゆうに頼ることができると思いますか?'黒いローブは遠くないダン·シャオ秦ゆうから立っていたと述べたが、現時点では、黒のローブ秦ゆう片手で、それは神秘的な黄色の斑点がある古風な黒小銃、ライフル銃です。<br><br>雪の殺し屋、Lingbaoは、よりファーストクラスあいまいテロ雪の殺し屋より、秦Yuは最終的に出てきた [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_10.php クリスチャンルブタン 銀座]。<br>攻撃 [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_4.php クリスチャンルブタン パンプス]?雪の神より<br>」
A run of the random Fibonacci sequence starts with 1,1 and the value of the each subsequent term is determined by a [[fair coin]] toss: given two consecutive elements of the sequence, the next element is either their sum or their difference with probability 1/2, independently of all the choices made previously. If in the random Fibonacci sequence the plus sign is chosen at each step, the corresponding run is the [[Fibonacci sequence]] {''F''<sub>''n''</sub>},
相关的主题文章:
<ul>
 
  <li>[http://www2t.biglobe.ne.jp/ugo2/bbs/yybbs.cgi http://www2t.biglobe.ne.jp/ugo2/bbs/yybbs.cgi]</li>
 
  <li>[http://www.british1.co.uk/cgi-bin/search.cgi http://www.british1.co.uk/cgi-bin/search.cgi]</li>
 
  <li>[http://pattson.com/cgi-bin/guestbook/guestbook.cgi http://pattson.com/cgi-bin/guestbook/guestbook.cgi]</li>
 
</ul>


== 'DUANMUヒスイ数人がすぐに秦ゆうを開催しています ==
: <math> 1,1,2,3,5,8,13,21,34,55,\ldots. </math>


動き回る。<br><br>「秦ゆうの弟、お元気ですか? [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_0.php クリスチャンルブタン] 'DUANMUヒスイ数人がすぐに秦ゆうを開催しています。<br>立ち上がるのは難しい<br>瞬間、秦Yuは、ステージを離れた後、秦ゆう損傷は印象的なスピードを修復することです [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_13.php クリスチャンルブタン サンダル]。<br><br>「私はまだ失敗しました。 [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_13.php クリスチャンルブタン パンプス] '秦ゆう本体はちょうど時間に第九十六層に、わずかに震えている、秦Yuは実際に落下したいのですが、秦Yuは、ちょうど岸に自分たちの生活を戦うが、 [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_4.php クリスチャンルブタン 取扱店] 1レベルでは、彼は爆撃機が落下であることに異論はないだろう。<br><br>「ああ、その週に出ていた。「突然、誰かが声を出して言った。<br><br>秦Yuは私が彼の顔は週が希望的観測は私ペナルティ神殿から鋭利黒地を保持する、だった笑顔を見た、見たレイペナルティ寺の方向に向かって、まっすぐに、血液に口をオフに触れた。<br><br>第38章シニアレイペナルティリマインダー<br>誰もが見ている中で<br>、週など秦ゆう人もの人のグループが、その後見たはしごダウンステップを笑顔、両刃黒独り善がりを保持した、彼は笑って、オーバー歩いた [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_1.php クリスチャンルブタン 店舗 東京]<br><br>'秦ゆう
If the signs alternate in minus-plus-plus-minus-plus-plus-... pattern, the result is the sequence
相关的主题文章:
 
<ul>
: <math> 1,1,0,1,1,0,1,1,0,1,\ldots.</math>
 
 
  <li>[http://www.ypy.hk/plus/view.php?aid=192488 http://www.ypy.hk/plus/view.php?aid=192488]</li>
However, such patterns occur with vanishing probability in a random experiment. In a typical run, the terms will not follow a predictable pattern:
 
 
  <li>[http://shurey.com/cgi/fantasy/fantasy.cgi http://shurey.com/cgi/fantasy/fantasy.cgi]</li>
: <math> 1, 1, 2, 3, 1, -2, -3, -5, -2, -3, \ldots
 
\text{ for the signs } +, +, -, -, -, +, -, -, \ldots.</math>
  <li>[http://www7a.biglobe.ne.jp/~wakayamaen/bbs/waka_0o0k0m1_epad2.cgi http://www7a.biglobe.ne.jp/~wakayamaen/bbs/waka_0o0k0m1_epad2.cgi]</li>
 
 
Similarly to the deterministic case, the random Fibonacci sequence may be profitably described via matrices:
</ul>
 
:<math>{f_{n-1} \choose f_{n}} = \begin{pmatrix} 0 & 1 \\ \pm 1 & 1 \end{pmatrix} {f_{n-2} \choose f_{n-1}},</math>
 
where the signs are chosen independently for different ''n'' with equal probabilities for + or −. Thus
 
:<math>{f_{n-1} \choose f_{n}} =  M_{n}M_{n-1}\ldots M_3{f_{1} \choose f_{2}},</math>
 
where {''M''<sub>''k''</sub>} is a sequence of [[Independent and identically-distributed random variables|independent identically distributed random matrices]] taking values ''A'' or ''B'' with probability 1/2:
 
: <math> A=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad
B=\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}. </math>
 
== Growth rate ==
 
[[Johannes Kepler]] discovered that as ''n'' increases, the ratio of the successive terms of the Fibonacci sequence {''F''<sub>''n''</sub>} approaches the [[golden ratio]] <math>\varphi=(1+\sqrt{5})/2,</math> which is approximately 1.61803. In 1765, [[Leonhard Euler]] published an explicit formula, known today as the [[Binet formula]],
 
:<math> F_n = {{\varphi^n-(-1/\varphi)^{n}} \over {\sqrt 5}}. </math>
 
It demonstrates that the Fibonacci numbers grow at an exponential rate equal to the golden ratio ''φ''.
 
In 1960, [[Hillel Furstenberg]] and [[Harry Kesten]] showed that for a general class of random [[matrix (math)|matrix]] products, the [[matrix norm|norm]] grows as ''λ''<sup>''n''</sup>, where ''n'' is the number of factors. Their results apply to a broad class of random sequence generating processes that includes the random Fibonacci sequence. As a consequence, the ''n''th root of |''f''<sub>''n''</sub>| converges to a constant value ''[[almost surely]]'', or with probability one:
 
:<math> \sqrt[n]{|f_n|} \to 1.13198824\dots \text{ as } n \to \infty. </math>
 
An explicit expression for this constant was found by Divakar Viswanath in 1999. It uses Furstenberg's formula for the [[Lyapunov exponent]] of a random matrix product and integration over a certain [[fractal|fractal measure]] on the [[Stern–Brocot tree]]. Moreover, Viswanath computed the numerical value above using [[floating point]] arithmetics validated by an analysis of the [[rounding error]].
 
==Related work==
 
The [[Embree–Trefethen constant]] describes the qualitative behavior of the random sequence with the recurrence relation
 
: <math> f_n=f_{n-1}\pm \beta f_{n-2}</math>
 
for different values of β.<ref>{{cite doi|10.1098/rspa.1999.0412|noedit}}</ref>
 
==References==
{{reflist}}
 
==External links==
* [http://sciencenews.org/sn_arc99/6_12_99/bob1.htm A brief explanation]
* {{MathWorld|urlname=RandomFibonacciSequence|title=Random Fibonacci Sequence}}
* {{SloanesRef|sequencenumber=A078416}}
 
[[Category:Fibonacci numbers]]
[[Category:Mathematical constants]]
[[Category:Number theory]]

Revision as of 11:30, 10 January 2014

In mathematics, the random Fibonacci sequence is a stochastic analogue of the Fibonacci sequence defined by the recurrence relation fn = fn−1 ± fn−2, where the signs + or − are chosen at random with equal probability 1/2, independently for different n. By a theorem of Harry Kesten and Hillel Furstenberg, random recurrent sequences of this kind grow at a certain exponential rate, but it is difficult to compute the rate explicitly. In 1999, Divakar Viswanath showed that the growth rate of the random Fibonacci sequence is equal to 1.1319882487943…, a mathematical constant that was later named Viswanath's constant.[1][2][3]

Description

The random Fibonacci sequence is an integer random sequence {fn}, where f1 = f2 = 1 and the subsequent terms are determined from the random recurrence relation

fn={fn1+fn2, with probability 1/2;fn1fn2, with probability 1/2.

A run of the random Fibonacci sequence starts with 1,1 and the value of the each subsequent term is determined by a fair coin toss: given two consecutive elements of the sequence, the next element is either their sum or their difference with probability 1/2, independently of all the choices made previously. If in the random Fibonacci sequence the plus sign is chosen at each step, the corresponding run is the Fibonacci sequence {Fn},

1,1,2,3,5,8,13,21,34,55,.

If the signs alternate in minus-plus-plus-minus-plus-plus-... pattern, the result is the sequence

1,1,0,1,1,0,1,1,0,1,.

However, such patterns occur with vanishing probability in a random experiment. In a typical run, the terms will not follow a predictable pattern:

1,1,2,3,1,2,3,5,2,3, for the signs +,+,,,,+,,,.

Similarly to the deterministic case, the random Fibonacci sequence may be profitably described via matrices:

(fn1fn)=(01±11)(fn2fn1),

where the signs are chosen independently for different n with equal probabilities for + or −. Thus

(fn1fn)=MnMn1M3(f1f2),

where {Mk} is a sequence of independent identically distributed random matrices taking values A or B with probability 1/2:

A=(0111),B=(0111).

Growth rate

Johannes Kepler discovered that as n increases, the ratio of the successive terms of the Fibonacci sequence {Fn} approaches the golden ratio φ=(1+5)/2, which is approximately 1.61803. In 1765, Leonhard Euler published an explicit formula, known today as the Binet formula,

Fn=φn(1/φ)n5.

It demonstrates that the Fibonacci numbers grow at an exponential rate equal to the golden ratio φ.

In 1960, Hillel Furstenberg and Harry Kesten showed that for a general class of random matrix products, the norm grows as λn, where n is the number of factors. Their results apply to a broad class of random sequence generating processes that includes the random Fibonacci sequence. As a consequence, the nth root of |fn| converges to a constant value almost surely, or with probability one:

|fn|n1.13198824 as n.

An explicit expression for this constant was found by Divakar Viswanath in 1999. It uses Furstenberg's formula for the Lyapunov exponent of a random matrix product and integration over a certain fractal measure on the Stern–Brocot tree. Moreover, Viswanath computed the numerical value above using floating point arithmetics validated by an analysis of the rounding error.

Related work

The Embree–Trefethen constant describes the qualitative behavior of the random sequence with the recurrence relation

fn=fn1±βfn2

for different values of β.[4]

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

  • A brief explanation


  • I had like 17 domains hosted on single account, and never had any special troubles. If you are not happy with the service you will get your money back with in 45 days, that's guaranteed. But the Search Engine utility inside the Hostgator account furnished an instant score for my launched website. Fantastico is unable to install WordPress in a directory which already have any file i.e to install WordPress using Fantastico the destination directory must be empty and it should not have any previous installation files. When you share great information, others will take note. Once your hosting is purchased, you will need to setup your domain name to point to your hosting. Money Back: All accounts of Hostgator come with a 45 day money back guarantee. If you have any queries relating to where by and how to use Hostgator Discount Coupon, you can make contact with us at our site. If you are starting up a website or don't have too much website traffic coming your way, a shared plan is more than enough. Condition you want to take advantage of the worldwide web you prerequisite a HostGator web page, -1 of the most trusted and unfailing web suppliers on the world wide web today. Since, single server is shared by 700 to 800 websites, you cannot expect much speed.



    Hostgator tutorials on how to install Wordpress need not be complicated, especially when you will be dealing with a web hosting service that is friendly for novice webmasters and a blogging platform that is as intuitive as riding a bike. After that you can get Hostgator to host your domain and use the wordpress to do the blogging. Once you start site flipping, trust me you will not be able to stop. I cut my webmaster teeth on Control Panel many years ago, but since had left for other hosting companies with more commercial (cough, cough) interfaces. If you don't like it, you can chalk it up to experience and go on. First, find a good starter template design. When I signed up, I did a search for current "HostGator codes" on the web, which enabled me to receive a one-word entry for a discount. Your posts, comments, and pictures will all be imported into your new WordPress blog.
  • Template:SloanesRef