Four exponentials conjecture: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>BattyBot
m fixed CS1 errors: dates & General fixes using AWB (9832)
en>Rjwilmsi
m References: Added 1 dois to journal cites using AWB (10090)
 
Line 1: Line 1:
{{Multiple issues|orphan = April 2011|refimprove = October 2009}}
Hi, everybody! <br>I'm Turkish female ;=). <br>I really love Seaglass collecting!<br><br>Also visit my web site :: [http://www.imariogames.net/profile/roi59.html wordpress backup]
 
In [[algebra]], '''componendo and dividendo''' (or '''componendo et dividendo''') is a method of [[simplification]] based on fractions provided that they are in proportion.  It states that<ref>Bhamra, ''Partial Differential Equations''. PHI Learning Pvt. Ltd.  ISBN 978-81-203-3917-0
</ref>
<ref>
http://www.qc.edu.hk/math/Junior%20Secondary/Componendo%20et%20Dividendo.htm
</ref>
 
:<math> \text{If } \frac{a}{b} = \frac{c}{d} \text{ and } a \neq b \text{, then }  \frac{a+b}{a-b} = \frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{\frac{c}{d} + 1}{\frac{c}{d} - 1} = \frac{c+d}{c-d}. </math>
 
==Comment on the proof==
We can similarly deduce the much more general fact that the value of any fraction
 
:<math>\frac{x_0 + \cdots + x_n}{y_0 + \cdots +y_n}</math>
 
in which <math>x_0</math> and <math>y_0</math> are nonzero and can be expressed in terms of the values of
 
:<math>\frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0}, \frac{y_1}{y_0}, \ldots, \frac{y_n}{y_0} </math>
 
and the value of <math>\frac{x_0}{y_0}</math>, and so depends only on the values of those 2''n''&nbsp;+&nbsp;1 fractions:
 
:<math> \frac{x_0 + \cdots + x_n}{y_0 + \cdots +y_n}
= \frac{x_0}{y_0} \left(\frac{1 + \frac{x_1}{x_0} + \cdots + \frac{x_n}{x_0}}{1 + \frac{y_1}{y_0} + \cdots + \frac{y_n}{y_0}}\right)</math>
 
The original result is essentially a special case of this fact, because
 
:<math>\frac{x+y}{x-y} = \frac{x+y}{x+(-y)}</math>
 
can be regarded as a fraction of the above form.
 
==Example==
This method can be used in various situations.
 
For instance :
 
:<math>\frac{\sqrt{3} + x}{\sqrt{3} - x} = 2</math>
 
Find the value of ''x''.
 
Solution :
 
Applying C and D
 
: <math>\frac{(\sqrt{3} + x) + (\sqrt{3} - x)}{(\sqrt{3} + x) - (\sqrt{3} - x)} = \frac{2 + 1}{2 - 1}</math>
: <math>=> \frac{2 \sqrt{3}}{2 x} = \frac{3}{1}</math>
: <math>=> \frac{\sqrt{3}}{x} = 3</math>
: <math>=> x = \frac{1}{\sqrt{3}}</math>
 
==References==
<references/>
 
==See also==
* [[Reduction (mathematics)]]
* [[Fraction (mathematics)]]
 
{{DEFAULTSORT:Componendo And Dividendo}}
[[Category:Fractions]]
[[Category:Algebra]]
 
 
{{algebra-stub}}

Latest revision as of 21:11, 1 May 2014

Hi, everybody!
I'm Turkish female ;=).
I really love Seaglass collecting!

Also visit my web site :: wordpress backup