|
|
Line 1: |
Line 1: |
| {{Other uses|Kumaraswamy (disambiguation)}}
| | <br><br><br><br>If you adored this [http://Nytimes.com/ref/membercenter/nytarchive.html article] and also you would like to obtain more info about [http://www.cravedgames.com/profile/liblaxland Los Angeles PR firms Crier PR] nicely visit the website. |
| {{Probability distribution |
| |
| name =Kumaraswamy|
| |
| type =density|
| |
| pdf_image =[[Image:KumaraswamyT pdf.svg|325px|Probability density function]]|
| |
| cdf_image =[[Image:Kumaraswamy cdf.svg|325px|Cumulative distribution function]]|
| |
| parameters =<math>a>0\,</math> [[real number|(real)]]<br><math>b>0\,</math> [[real number|(real)]]|
| |
| support =<math>x \in [0,1]\,</math>|
| |
| pdf =<math>abx^{a-1}(1-x^a)^{b-1}\,</math>|
| |
| cdf =<math>[1-(1-x^a)^b]\,</math>|
| |
| mean =<math>\frac{b\Gamma(1+\tfrac{1}{a})\Gamma(b)}{\Gamma(1+\tfrac{1}{a}+b)}\,</math>|
| |
| median =<math>\left(1-2^{-1/b}\right)^{1/a}</math>|
| |
| mode =<math>\left(\frac{a-1}{ab-1}\right)^{1/a}</math> for <math>a\geq 1, b\geq 1, (a,b)\neq (1,1)</math>|
| |
| variance =(complicated-see text)|
| |
| skewness =(complicated-see text)|
| |
| kurtosis =(complicated-see text)|
| |
| entropy =|
| |
| mgf =|
| |
| char =
| |
| }}
| |
| In [[probability]] and [[statistics]], the '''Kumaraswamy's double bounded distribution''' is a family of [[continuous probability distribution]]s defined on the interval [0,1] differing in the values of their two non-negative [[shape parameter]]s, ''a'' and ''b''.
| |
| | |
| It is similar to the [[Beta distribution]], but much simpler to use especially in simulation studies due to the simple [[closed-form solution|closed form]] of both its [[probability density function]] and [[cumulative distribution function]]. This distribution was originally proposed by [[Poondi Kumaraswamy]] for variables that are lower and upper bounded.
| |
| | |
| ==Characterization==
| |
| | |
| ===Probability density function===
| |
| The [[probability density function]] of the Kumaraswamy distribution is
| |
| | |
| :<math> f(x; a,b) = a b x^{a-1}{ (1-x^a)}^{b-1}.</math>
| |
| | |
| ===Cumulative distribution function===
| |
| The [[cumulative distribution function]] is therefore
| |
| | |
| :<math>F(x; a,b)=1-(1-x^a)^b.\ </math>
| |
| | |
| ===Generalizing to arbitrary range===
| |
| In its simplest form, the distribution has a range of [0,1]. In a more general form, the normalized variable ''x'' is replaced with the unshifted and unscaled variable ''z'' where:
| |
| | |
| :<math> x = \frac{z-z_{\text{min}}}{z_{\text{max}}-z_{\text{min}}} , \qquad z_{\text{min}} \le z \le z_{\text{max}}. \,\!</math>
| |
| | |
| ==Properties==
| |
| The raw [[moment (mathematics)|moments]] of the Kumaraswamy distribution are given by {{Citation needed|date=June 2008}}:
| |
| | |
| :<math>m_n = \frac{b\Gamma(1+n/a)\Gamma(b)}{\Gamma(1+b+n/a)} = bB(1+n/a,b)\,</math>
| |
| | |
| where ''B'' is the [[Beta function]]. The variance, skewness, and excess kurtosis can be calculated from these raw moments. For example, the variance is:
| |
| | |
| :<math>\sigma^2=m_2-m_1^2.</math>
| |
| | |
| ==Relation to the Beta distribution==
| |
| The Kuramaswamy distribution is closely related to Beta distribution.
| |
| Assume that ''X''<sub>a,b</sub> is a Kumaraswamy distributed random variable with parameters ''a'' and ''b''.
| |
| Then ''X''<sub>a,b</sub> is the ''a''-th root of a suitably defined Beta distributed random variable.
| |
| More formally, Let ''Y''<sub>1,b</sub> denote a [[Beta distribution|Beta distributed]] random variable with parameters <math>\alpha=1</math> and <math>\beta=b</math>.
| |
| One has the following relation between ''X''<sub>a,b</sub> and ''Y''<sub>1,b</sub>.
| |
| | |
| :<math>X_{a,b}=Y^{1/a}_{1,b},</math>
| |
| | |
| with equality in distribution.
| |
| | |
| :<math>\operatorname{P}\{X_{a,b}\le x\}=\int_0^x ab t^{a-1}(1-t^a)^{b-1}dt=
| |
| \int_0^{x^a} b(1-t)^{b-1}dt=\operatorname{P}\{Y_{1,b}\le x^a\}
| |
| =\operatorname{P}\{Y^{1/a}_{1,b}\le x\}
| |
| .</math>
| |
| | |
| One may introduce generalised Kuramaswamy distributions by considering random variables of the form
| |
| <math>Y^{1/\gamma}_{\alpha,\beta}</math>, with <math>\gamma>0</math> and where <math>Y_{\alpha,\beta}</math>
| |
| denotes a Beta distributed random variable with parameters <math>\alpha</math> and <math>\beta</math>.
| |
| The raw [[moment (mathematics)|moments]] of this generalized Kumaraswamy distribution are given by:
| |
| :<math>m_n = \frac{\Gamma(\alpha+\beta)\Gamma(\alpha+n/\gamma)}{\Gamma(\alpha)\Gamma(\alpha+\beta+n/\gamma)}.</math> | |
| Note that we can reobtain the original moments setting <math>\alpha=1</math>, <math>\beta=b</math> and <math>\gamma=a</math>.
| |
| However, in general the cumulative distribution function does not have a closed form solution.
| |
| | |
| ==Related distributions==
| |
| *If <math> X \sim \textrm{Kumaraswamy}(1,1)\,</math> then <math> X \sim U(0,1)\,</math>
| |
| *If <math> X \sim U(0,1) \,</math> ([[Uniform distribution (continuous)]]) then <math> {\left( 1 - {\left( 1-X \right) }^{\tfrac{1}{b}} \right) }^{ \tfrac{1}{a} } \sim \textrm{Kumaraswamy}(a,b)\,</math>
| |
| *If <math> X \sim \textrm{Beta}(1,b) \, </math> ([[Beta distribution]]) then <math> X \sim \textrm{Kumaraswamy}(1,b)\, </math>
| |
| *If <math> X \sim \textrm{Beta}(a,1) \, </math> ([[Beta distribution]]) then <math> X \sim \textrm{Kumaraswamy}(a,1)\, </math>
| |
| *If <math> X \sim \textrm{Kumaraswamy}(a,1)\,</math> then <math> (1-X) \sim \textrm{Kumaraswamy}(1, a)\,</math>
| |
| *If <math> X \sim \textrm{Kumaraswamy}(1,a)\,</math> then <math> (1-X) \sim \textrm{Kumaraswamy}(a, 1)\,</math>
| |
| *If <math> X \sim \textrm{Kumaraswamy}(a,1)\,</math> then <math> -ln(X) \sim \textrm{Exponential}(a)\,</math>
| |
| *If <math> X \sim \textrm{Kumaraswamy}(1,b)\,</math> then <math> -ln(1-X) \sim \textrm{Exponential}(b)\,</math>
| |
| *If <math> X \sim \textrm{Kumaraswamy}(a,b)\,</math> then <math> X \sim \textrm{GB1}(a, 1, 1, b)\,</math>, the [[Generalized_Beta_distribution#Related distributions|generalized beta distribution of the first kind]].
| |
| | |
| ==Example==
| |
| A good example of the use of the Kumaraswamy distribution is the storage volume of a reservoir of capacity ''z''<sub>max</sub> whose upper bound is ''z''<sub>max</sub> and lower bound is 0 (Fletcher & Ponnambalam, 1996).
| |
| | |
| ==References==
| |
| | |
| * {{cite journal | doi=10.1016/0022-1694(80)90036-0 | author=Kumaraswamy, P. | title=A generalized probability density function for double-bounded random processes | journal=[[Journal of Hydrology]] | year=1980 | volume=46 | issue=1-2 | pages= 79–88}}
| |
| * {{cite journal | doi=10.1016/0022-1694(95)02946-X | author=Fletcher, S.G., and Ponnambalam, K. | title=Estimation of reservoir yield and storage distribution using moments analysis | journal=Journal of Hydrology | year=1996 | volume=182 | issue=1-4 | pages=259–275}}
| |
| * {{cite journal | doi=10.1016/j.stamet.2008.04.001 | author=Jones, M.C. | title=Kumaraswamy's distribution: A beta-type distribution with some tractability advantages | journal=Statistical Methodology | year=2009 | volume=6 | issue=1 | pages=70–81}}
| |
| * {{cite journal | doi=10.1080/00949655.2010.511621 | author=Lemonte, A.J. | title=Improved point estimation for the Kumaraswamy distribution | journal=Journal of Statistical Computation and Simulation | year=2011 | volume=81 | issue=12 | pages=1971–1982}}
| |
| | |
| {{ProbDistributions|continuous-bounded}}
| |
| | |
| [[Category:Continuous distributions]]
| |
| [[Category:Probability distributions]]
| |