|
|
Line 1: |
Line 1: |
| {{no footnotes|date=March 2013}}
| |
| In [[axiomatic set theory]], the '''axiom of empty set''' is an [[axiom]] of [[Kripke–Platek set theory]] and the variant of [[general set theory]] that Burgess (2005) calls "ST," and a demonstrable truth in [[Zermelo set theory]] and [[Zermelo–Fraenkel set theory]], with or without the [[axiom of choice]].
| |
|
| |
|
| == Formal statement ==
| |
| In the [[formal language]] of the Zermelo–Fraenkel axioms, the axiom reads:
| |
| :<math>\exist x\, \forall y\, \lnot (y \in x)</math>
| |
| or in words:
| |
| :[[Existential quantification|There is]] a [[Set (mathematics)|set]] such that no set is a member of it.
| |
|
| |
|
| == Interpretation ==
| | [http://eu4wiki.de/index.php?title=8_Ways_Casino_Kungen_Will_Improve_Your_Sex_Life Nya casinon] My name is Sherrill Elizondo. Data processing іs whеre my primary income сomes frοm but I've cսrrently applied fߋr anotɦer one. Playing croquet іs some tɦing [http://porivasha.com/index.php/4_Surprisingly_Effective_Ways_To_Casino_Mentor Topplista kungen nätcasinon] heг husband doesn't truly likе but she dߋes. Oklahoma ɦas alwaƴs been ɦer house bսt her [http://search.Usa.gov/search?query=husband+desires husband desires] thеm to transfer. I'm not gooԁ ɑt webdesign but you miɡht want tο check my website: http://cogito.no-ip.info/cogito/tutowiki/index.php/Five_Incredible_Leka_Casino_Online_Kungen_Svenska_Transformations<br><br>Feel free tߋ surf to my blog post; [http://cogito.no-ip.info/cogito/tutowiki/index.php/Five_Incredible_Leka_Casino_Online_Kungen_Svenska_Transformations Sveriges bästa casinon närvarande!] |
| We can use the [[axiom of extensionality]] to show that there is only one empty set. Since it is unique we can name it. It is called the ''[[empty set]]'' (denoted by { } or ∅). The axiom, stated in natural language, is in essence:
| |
| :''An empty set exists''. | |
| | |
| The axiom of empty set is generally considered uncontroversial, and it or an equivalent appears in just about any alternative axiomatisation of set theory.
| |
| | |
| In some formulations of ZF, the axiom of empty set is actually repeated in the [[axiom of infinity]]. However, there are other formulations of that axiom that do not presuppose the existence of an empty set. The ZF axioms can also be written using a [[First-order logic#Non-logical symbols|constant symbol]] representing the empty set; then the axiom of infinity uses this symbol without requiring it to be empty, while the axiom of empty set is needed to state that it is in fact empty.
| |
| | |
| Furthermore, one sometimes considers set theories in which there are no infinite sets, and then the axiom of empty set may still be required. That said, any axiom of set theory or logic that implies the existence of any set will imply the existence of the empty set, if one has the [[axiom schema of separation]]. This is true, since the empty set is a subset of any set consisting of those elements that satisfy a contradictory formula.
| |
| | |
| In many formulations of first-order predicate logic, the existence of at least one object is always guaranteed. If the axiomatization of set theory is formulated in such a [[logical system]] with the [[axiom schema of separation]] as axioms, and if the theory makes no distinction between sets and other kinds of objects (which holds for ZF, KP, and similar theories), then the existence of the empty set is a theorem.
| |
| | |
| If separation is not postulated as an axiom schema, but derived as a theorem schema from the schema of replacement (as is sometimes done), the situation is more complicated, and depends on the exact formulation of the replacement schema. The formulation used in the [[axiom schema of replacement]] article only allows to construct the image ''F''[''a''] when ''a'' is contained in the domain of the class function ''F''; then the derivation of separation requires the axiom of empty set. On the other hand, the constraint of totality of ''F'' is often dropped from the replacement schema, in which case it implies the separation schema without using the axiom of empty set (or any other axiom for that matter).
| |
| | |
| == References == | |
| *Burgess, John, 2005. ''Fixing Frege''. Princeton Univ. Press.
| |
| *[[Paul Halmos]], ''Naive set theory''. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
| |
| *[[Thomas Jech|Jech, Thomas]], 2003. ''Set Theory: The Third Millennium Edition, Revised and Expanded''. Springer. ISBN 3-540-44085-2.
| |
| *[[Kenneth Kunen|Kunen, Kenneth]], 1980. ''Set Theory: An Introduction to Independence Proofs''. Elsevier. ISBN 0-444-86839-9.
| |
| | |
| [[Category:Axioms of set theory]]
| |
| [[Category:Nothing]]
| |
| | |
| [[de:Zermelo-Fraenkel-Mengenlehre#Die Axiome von ZF und ZFC]]
| |
Nya casinon My name is Sherrill Elizondo. Data processing іs whеre my primary income сomes frοm but I've cսrrently applied fߋr anotɦer one. Playing croquet іs some tɦing Topplista kungen nätcasinon heг husband doesn't truly likе but she dߋes. Oklahoma ɦas alwaƴs been ɦer house bսt her husband desires thеm to transfer. I'm not gooԁ ɑt webdesign but you miɡht want tο check my website: http://cogito.no-ip.info/cogito/tutowiki/index.php/Five_Incredible_Leka_Casino_Online_Kungen_Svenska_Transformations
Feel free tߋ surf to my blog post; Sveriges bästa casinon närvarande!