Mandelbrot set: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Denelson83
m Escape time algorithm: "absolute value"
en>TheRingess
Undid revision 596927866 by 163.119.134.125 (talk) rvt fancruft, belongs more appropriately on the series page
Line 1: Line 1:
{{about|the decision theory concept}}
The person who wrote the article is called Jayson Hirano and he completely digs that name. To play lacross is 1 of the things she enjoys most. For many years she's been residing in Kentucky but her spouse desires them to transfer. Since he was eighteen he's been operating as an information officer but he plans on changing it.<br><br>My blog: [http://www.clubwww1music.com/profile.php?u=TwPiedra cheap psychic readings]
'''Minimax''' (sometimes '''MinMax''' or '''MM'''<ref>[http://www.fraserinstitute.org/uploadedFiles/fraser-ca/Content/research-news/research/publications/provincial-healthcare-index-2013.pdf Provincial Healthcare Index 2013] (Bacchus Barua, Fraser Institute, January 2013 -see page 25-)</ref>) is a decision rule used in [[decision theory]], [[game theory]], [[statistics]] and [[philosophy]] for ''mini''mizing the possible [[loss function|loss]] for a worst case (''max''imum loss) scenario.  Alternatively, it can be thought of as ''maxi''mizing the ''min''imum gain ('''maximin''' or '''MaxMin'''). Originally formulated for two-player [[zero-sum]] [[game theory]], covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision making in the presence of uncertainty.
 
==Game theory ==
In the theory of [[Game theory#Simultaneous and sequential|simultaneous games]], a minimax strategy is a [[Strategy (game theory)#Pure and mixed strategies|mixed strategy]] which is part of the solution to a zero-sum game. In zero-sum games, the minimax solution is the same as the [[Nash equilibrium]].
 
===Minimax theorem===
The minimax theorem states<ref name=Osborne>Osborne, Martin J., and [[Ariel Rubinstein]]. ''A Course in Game Theory''. Cambridge, MA: MIT, 1994. Print.</ref>
 
<blockquote>For every two-person, [[zero-sum]] game with finitely many strategies, there exists a value V and a mixed strategy for each player, such that
:(a) Given player 2's strategy, the best payoff possible for player 1 is V, and
:(b) Given player 1's strategy, the best payoff possible for player 2 is −V.
</blockquote>
Equivalently, Player 1's strategy guarantees him a payoff of V regardless of Player 2's strategy, and similarly Player 2 can guarantee himself a payoff of −V.  The name minimax arises because each player minimizes the maximum payoff possible for the other—since the game is zero-sum, he also minimizes his own maximum loss (i.e. maximize his minimum payoff).
 
This theorem was first published in 1928 by [[John von Neumann]],<ref>Von Neumann, J: ''Zur Theorie der Gesellschaftsspiele'' Math. Annalen. '''100''' (1928) 295-320</ref> who is quoted as saying "As far as I can see, there could be no theory of games … without that theorem … I thought there was nothing worth publishing until the ''Minimax Theorem'' was proved".<ref name=Casti>{{cite book
|author=John L Casti
|title=Five golden rules: great theories of 20th-century mathematics – and why they matter
|url=http://worldcat.org/isbn/0-471-00261-5
|publisher=Wiley-Interscience
|location=New York
|year=1996
|page=19
|isbn=0-471-00261-5}}</ref>
 
See [[Sion's minimax theorem]] and [[Parthasarathy's theorem]] for generalizations; see also [[example of a game without a value]].
 
===Example===
{| class="wikitable" align="right"
!
! B chooses B1
! B chooses B2
! B chooses B3
|-
! A chooses A1
| &nbsp;&nbsp;&nbsp;&nbsp;+3
| &nbsp;&nbsp;&nbsp;&nbsp;−2
| &nbsp;&nbsp;&nbsp;&nbsp;+2
|-
! A chooses A2
| &nbsp;&nbsp;&nbsp;&nbsp;−1
| &nbsp;&nbsp;&nbsp;&nbsp; 0
| &nbsp;&nbsp;&nbsp;&nbsp;+4
|-
! A chooses A3
| &nbsp;&nbsp;&nbsp;&nbsp;−4
| &nbsp;&nbsp;&nbsp;&nbsp;−3
| &nbsp;&nbsp;&nbsp;&nbsp;+1
|}
The following example of a zero-sum game, where '''A''' and '''B''' make simultaneous moves, illustrates ''minimax'' solutions. Suppose each player has three choices and consider the [[payoff matrix]] for '''A''' displayed at right. Assume the payoff matrix for '''B''' is the same matrix with the signs reversed (i.e. if the choices are A1 and B1 then '''B''' pays 3 to '''A'''). Then, the minimax choice for '''A''' is A2 since the worst possible result is then having to pay 1, while the simple minimax choice for '''B''' is B2 since the worst possible result is then no payment.  However, this solution is not stable, since if '''B''' believes '''A''' will choose A2 then '''B''' will choose B1 to gain 1; then if '''A''' believes '''B''' will choose B1 then '''A''' will choose A1 to gain 3; and then '''B''' will choose B2; and eventually both players will realize the difficulty of making a choice. So a more stable strategy is needed.
 
Some choices are ''dominated'' by others and can be eliminated: '''A''' will not choose A3 since either A1 or A2 will produce a better result, no matter what '''B''' chooses; '''B''' will not choose B3 since some mixtures of B1 and B2 will produce a better result, no matter what '''A''' chooses.
 
'''A''' can avoid having to make an expected payment of more than 1∕3 by choosing A1 with probability 1∕6 and A2 with probability 5∕6: The expected payoff for '''A''' would be 3 × (1∕6) − 1 × (5∕6) = −1∕3 in case '''B''' chose B1 and −2 × (1∕6) + 0 × (5∕6) = −1∕3 in case '''B''' chose B2.  Similarly, '''B''' can ensure an expected gain of at least 1/3, no matter what '''A''' chooses, by using a randomized strategy of choosing B1 with probability 1∕3 and B2 with probability 2∕3. These [[mixed strategy|mixed]] minimax strategies are now stable and cannot be improved.
 
===Maximin===
Frequently, in game theory, '''maximin''' is distinct from minimax. Minimax is used in zero-sum games to denote minimizing the opponent's maximum payoff. In a [[zero-sum game]], this is identical to minimizing one's own maximum loss, and to maximizing one's own minimum gain.
 
"Maximin" is a term commonly used for non-zero-sum games to describe the strategy which maximizes one's own minimum payoff. In non-zero-sum games, this is not generally the same as minimizing the opponent's maximum gain, nor the same as the [[Nash equilibrium]] strategy.
 
==Combinatorial game theory==
 
In [[combinatorial game theory]], there is a minimax algorithm for game solutions.
 
A '''simple''' version of the minimax ''algorithm'', stated below, deals with games such as [[tic-tac-toe]], where each player can win, lose, or draw.
If player A ''can'' win in one move, his best move is that winning move.
If player B knows that one move will lead to the situation where player A ''can'' win in one move, while another move will lead to the situation where player A can, at best, draw, then player B's best move is the one leading to a draw.
Late in the game, it's easy to see what the "best" move is.
The Minimax algorithm helps find the best move, by working backwards from the end of the game. At each step it assumes that player A is trying to '''maximize''' the chances of A winning, while on the next turn player B is trying to '''minimize''' the chances of A winning (i.e., to maximize B's own chances of winning).
 
===Minimax algorithm with alternate moves===<!-- This section is linked from [[Alpha-beta pruning]] -->
 
A '''minimax algorithm'''<ref>{{Russell Norvig 2003|pages=163–171}}</ref> is a recursive [[algorithm]] for choosing the next move in an n-player [[game theory|game]], usually a two-player game. A value is associated with each position or state of the game. This value is computed by means of a [[evaluation function|position evaluation function]] and it indicates how good it would be for a player to reach that position. The player then makes the move that maximizes the minimum value of the position resulting from the opponent's possible following moves. If it is '''A'''<nowiki>'s</nowiki> turn to move, '''A''' gives a value to each of his legal moves.
 
A possible allocation method consists in assigning a certain win for '''A''' as +1 and for '''B''' as −1.  This leads to [[combinatorial game theory]] as developed by [[John Horton Conway]]. An alternative is using a rule that if the result of a move is an immediate win for '''A''' it is assigned positive infinity and, if it is an immediate win for '''B''', negative infinity. The value to '''A''' of any other move is the minimum of the values resulting from each of '''B'''<nowiki>'s</nowiki> possible replies. For this reason, '''A''' is called the ''maximizing player'' and '''B''' is called the ''minimizing player'', hence the name ''minimax algorithm''. The above algorithm will assign a value of positive or negative infinity to any position since the value of every position will be the value of some final winning or losing position.  Often this is generally only possible at the very end of complicated games such as [[chess]] or [[Go (board game)|go]], since it is not computationally feasible to look ahead as far as the completion of the game, except towards the end, and instead positions are given finite values as estimates of the degree of belief that they will lead to a win for one player or another.
 
This can be extended if we can supply a [[heuristic]] evaluation function which gives values to non-final game states without considering all possible following complete sequences. We can then limit the minimax algorithm to look only at a certain number of moves ahead. This number is called the "look-ahead", measured in "[[Ply (chess)|plies]]". For example, the chess computer [[IBM Deep Blue|Deep Blue]] (that beat [[Garry Kasparov]]) looked ahead at least 12 plies, then applied a heuristic evaluation function.{{Citation needed|date=January 2014}}
 
The algorithm can be thought of as exploring the [[node (computer science)|node]]s of a ''[[game tree]]''. The ''effective [[branching factor]]'' of the tree is the average number of [[child node|children]] of each node (i.e., the average number of legal moves in a position).  The number of nodes to be explored usually [[exponential growth|increases exponentially]] with the number of plies (it is less than exponential if evaluating [[forced move]]s or repeated positions). The number of nodes to be explored for the analysis of a game is therefore approximately the branching factor raised to the power of the number of plies. It is therefore [[Computational complexity theory#Intractability|impractical]] to completely analyze games such as chess using the minimax algorithm.
 
The performance of the naïve minimax algorithm may be improved dramatically, without affecting the result, by the use of [[alpha-beta pruning]].
Other heuristic pruning methods can also be used, but not all of them are  guaranteed to give the same result as the un-pruned search.
 
A naïve minimax algorithm may be trivially modified to additionally return an entire [[Variation (game tree)#Principal variation|Principal Variation]] along with a minimax score.
 
=== Lua example ===
<source lang="lua">
function minimax(node,depth)
  if depth <= 0 then
      -- positive values are good for the maximizing player
      -- negative values are good for the minimizing player
      return objective_value(node)
  end
  -- maximizing player is (+1)
  -- minimizing player is (-1)
  local alpha = -node.player * INFINITY
 
  local child = next_child(node,nil)
  while child ~= nil do
      local score = minimax(child,depth-1)
      alpha = node.player==1 and math.max(alpha,score) or math.min(alpha,score)
      child = next_child(node,child)
  end
 
  return alpha
end
</source>
 
=== Pseudocode ===
 
The [[pseudocode]] for the depth limited minimax algorithm is given below.
 
'''function''' minimax(node, depth, maximizingPlayer)
    '''if''' depth = 0 '''or''' node is a terminal node
        '''return''' the heuristic value of node
    '''if''' maximizingPlayer
        bestValue := -∞
        '''for each''' child of node
            val := minimax(child, depth - 1, FALSE))
            bestValue := max(bestValue, val);
        '''return''' bestValue
    '''else'''
        bestValue := +∞
        '''for each''' child of node
            val := minimax(child, depth - 1, TRUE))
            bestValue := min(bestValue, val);
        '''return''' bestValue
''(* Initial call for maximizing player *)''
minimax(origin, depth, TRUE)
 
Minimax treats the two players (the maximizing player and the minimizing player) separately in its code. Based on the observation that [[Negamax|<math>\max(a,b) = -\min(-a,-b)</math>]], minimax may often be simplified into the [[negamax]] algorithm.
 
=== Example ===
 
[[Image:Minimax.svg|right|300px]]
[[File:Plminmax.gif|thumb|400px|An animated pedagogical example that attempts to be human-friendly by substituting initial infinite (or arbitrarily large) values for emptiness and by avoiding using the [[negamax]] coding simplifications.]]
 
Suppose the game being played only has a maximum of two possible moves per player each turn. The algorithm generates the [[game tree|tree]] on the right, where the circles represent the moves of the player running the algorithm (''maximizing player''), and squares represent the moves of the opponent (''minimizing player''). Because of the limitation of computation resources, as explained above, the tree is limited to a ''look-ahead'' of 4 moves.
 
The algorithm evaluates each ''[[leaf node]]'' using a heuristic evaluation function, obtaining the values shown. The moves where the ''maximizing player'' wins are assigned with positive infinity, while the moves that lead to a win of the ''minimizing player'' are assigned with negative infinity. At level 3, the algorithm will choose, for each node, the '''smallest''' of the ''[[child node]]'' values, and assign it to that same node (e.g. the node on the left will choose the minimum between "10" and "+∞", therefore assigning the value "10" to itself). The next step, in level 2, consists of choosing for each node the '''largest''' of the ''child node'' values. Once again, the values are assigned to each ''[[parent node]]''. The algorithm continues evaluating the maximum and minimum values of the child nodes alternately until it reaches the ''[[root node]]'', where it chooses the move with the largest value (represented in the figure with a blue arrow). This is the move that the player should make in order to ''minimize'' the ''maximum'' possible [[loss function|loss]].
 
==Minimax for individual decisions==
===Minimax in the face of uncertainty===
 
Minimax theory has been extended to decisions where there is no other player, but where the consequences of decisions depend on unknown facts.  For example, deciding to prospect for minerals entails a cost which will be wasted if the minerals are not present, but will bring major rewards if they are.  One approach is to treat this as a game against ''nature'' (see [[move by nature]]), and using a similar mindset as [[Murphy's law]], take an approach which minimizes the maximum expected loss, using the same techniques as in the two-person zero-sum games.
 
In addition, [[expectiminimax tree]]s have been developed, for two-player games in which chance (for example, dice) is a factor.
 
===Minimax criterion in statistical decision theory===
{{main|Minimax estimator}}
In classical statistical [[decision theory]], we have an [[estimator]] <math>\delta</math> that is used to estimate a [[parameter]] <math>\theta \in \Theta</math>. We also assume a [[risk function]] <math>R(\theta,\delta)</math>, usually specified as the integral of a [[loss function]]. In this framework, <math>\tilde{\delta}</math> is called '''minimax''' if it satisfies
 
: <Math>\sup_\theta R(\theta,\tilde{\delta}) = \inf_\delta \sup_\theta R(\theta,\delta).</math>
 
An alternative criterion in the decision theoretic framework is the [[Bayes estimator]] in the presence of a [[prior distribution]] <math>\Pi</math>. An estimator is Bayes if it minimizes the ''[[average]]'' risk
 
: <Math>\int_\Theta R(\theta,\delta)\,d\Pi(\theta).</math>
 
=== Non-probabilistic decision theory ===
A key feature of minimax decision making is being non-probabilistic: in contrast to decisions using [[expected value]] or [[expected utility]], it makes no assumptions about the probabilities of various outcomes, just [[scenario analysis]] of what the possible outcomes are. It is thus [[:wikt:robust|robust]] to changes in the assumptions, as these other decision techniques are not. Various extensions of this non-probabilistic approach exist, notably [[minimax regret]] and [[Info-gap decision theory]].
 
Further, minimax only requires [[ordinal measurement]] (that outcomes be compared and ranked), not ''interval'' measurements (that outcomes include "how much better or worse"), and returns ordinal data, using only the modeled outcomes: the conclusion of a minimax analysis is: "this strategy is minimax, as the worst case is (outcome), which is less bad than any other strategy". Compare to expected value analysis, whose conclusion is of the form: "this strategy yields E(''X'')=''n.''" Minimax thus can be used on ordinal data, and can be more transparent.
 
== Maximin in philosophy ==
 
In philosophy, the term "maximin" is often used in the context of [[John Rawls]]'s ''[[A Theory of Justice]],'' where he refers to it (Rawls (1971, p.&nbsp;152)) in the context of The Difference Principle.
Rawls defined this principle as the rule which states that social and economic inequalities should be arranged so that "they are to be of the greatest benefit to the least-advantaged members of society".  In other words, an unequal distribution can be just when it '''maxi'''mizes the '''min'''imum benefit to those who have the lowest allocation of welfare-conferring resources (which he refers to as "primary goods").<ref>[[Kenneth Arrow|Arrow]], "Some Ordinalist-Utilitarian Notes on Rawls's Theory of Justice, Journal of Philosophy 70, 9 (May 1973), pp. 245-263.</ref><ref>[[John Harsanyi|Harsanyi]], "Can the Maximin Principle Serve as a Basis for Morality? a Critique of John Rawls's Theory, American Political Science Review 69, 2 (June 1975), pp. 594-606.</ref>
 
== See also ==
<div style="-moz-column-count:2; column-count:2;">  
* [[Alpha-beta pruning]]
* [[Claude Elwood Shannon]]
* [[Computer chess]]
* [[Expectiminimax]]
* [[Horizon effect]]
* [[Minimax Condorcet]]
* [[Regret (decision theory)|Minimax regret]]
* [[Negamax]]
* [[Negascout]]
* [[Sion's minimax theorem]]
* [[Transposition table]]
* [[Wald's maximin model]]
</div>
 
==Notes==
{{reflist}}
 
== External links ==
* {{springer|title=Minimax principle|id=p/m063950}}
* [http://www.cut-the-knot.org/Curriculum/Games/MixedStrategies.shtml A visualization applet]
* [http://www.swif.uniba.it/lei/foldop/foldoc.cgi?maximin+principle "Maximin principle" from A Dictionary of Philosophical Terms and Names.]
* [http://www.bewersdorff-online.de/quaak/rules.htm Play a betting-and-bluffing game against a mixed minimax strategy]
* [http://www.nist.gov/dads/HTML/minimax.html] The Dictionary of Algorithms and Data Structures entry for minimax.
* [http://ksquared.de/gamevisual/launch.php Minimax] (with or without alpha-beta pruning) algorithm visualization &mdash; game tree solving (Java Applet), for balance or off-balance trees.
* [http://mmengineer.blogspot.com/2008/05/inteligencia-artificial-minimax-clisp.html CLISP minimax game.] (in [[spanish language|Spanish]])
* [http://franteractive.net/maximin.html Maximin Strategy from Game Theory]
* [http://apmonitor.com/me575/index.php/Main/MiniMax Minimax Tutorial with a Numerical Solution Platform]
 
{{Game theory}}
 
[[Category:Detection theory]]
[[Category:Game artificial intelligence]]
[[Category:Graph algorithms]]
[[Category:Optimization algorithms and methods]]
[[Category:Search algorithms]]
[[Category:Game theory]]
[[Category:Mathematical and quantitative methods (economics)]]
[[Category:Theorems in discrete mathematics]]
[[Category:Decision theory]]
[[Category:Fixed points (mathematics)]]

Revision as of 21:03, 24 February 2014

The person who wrote the article is called Jayson Hirano and he completely digs that name. To play lacross is 1 of the things she enjoys most. For many years she's been residing in Kentucky but her spouse desires them to transfer. Since he was eighteen he's been operating as an information officer but he plans on changing it.

My blog: cheap psychic readings