Synaptotagmin: Difference between revisions
en>AnomieBOT m Dating maintenance tags: {{Citation needed}} |
|||
Line 1: | Line 1: | ||
The '''Ergun equation''', derived by the [[Turkey|Turkish]] [[chemical engineer]] [[Sabri Ergun]] in 1952, expresses the [[friction factor]] in a [[packed bed|packed column]] as a function of the [[Reynolds number]]: | |||
<math> | |||
f_p = \frac {150}{Gr_p} + 1.75 | |||
</math> | |||
where <math>f_p</math> and <math>Gr_p</math> are defined as | |||
<math>f_p = \frac{\Delta p}{L} \frac{D_p}{\rho V_s^2} \left(\frac{\epsilon^3}{1-\epsilon}\right)</math> and <math>Gr_p = \frac{D_p V_s \rho}{(1-\epsilon)\mu}</math> | |||
where: | |||
<math>\Delta p</math> is the pressure drop across the bed,<br> | |||
<math>L</math> is the length of the bed (not the column),<br> | |||
<math>D_p</math> is the equivalent spherical diameter of the packing,<br> | |||
<math>\rho</math> is the [[density]] of fluid,<br> | |||
<math>\mu</math> is the [[dynamic viscosity]] of the fluid,<br> | |||
<math>V_s</math> is the [[superficial velocity]] (i.e. the velocity that the fluid would have through the empty tube at the same volumetric flow rate), and<br> | |||
<math>\epsilon</math> is the [[void fraction]] of the bed (bed [[porosity]] at any time). | |||
Extension of the Ergun equation to fluidized beds is discussed by Akgiray and Saatçı (2001). | |||
To calculate the pressure drop in a given reactor, the following equation may be deduced | |||
<math>\Delta p=\frac{150\mu (1-\epsilon)^2 V_s L}{\epsilon^3 D_p^2} + \frac{1.75 (1-\epsilon) \rho V_s^2 L}{\epsilon^3 D_p}</math> | |||
==See also== | |||
[[Kozeny–Carman equation]] | |||
==References== | |||
* S. Ergun, Chem. Process Eng. London 48, 89 1952. legacy.library.ucsf.edu/documentStore/e/f/k/.../Sefk76a99.pdf | |||
* Ö. Akgiray and A. M. Saatçı, Water Science and Technology: Water Supply, Vol:1, Issue:2, pp. 65–72, 2001. | |||
[[Category:Equations]] | |||
[[Category:Chemical engineering]] |
Revision as of 02:11, 5 October 2013
The Ergun equation, derived by the Turkish chemical engineer Sabri Ergun in 1952, expresses the friction factor in a packed column as a function of the Reynolds number:
where:
is the pressure drop across the bed,
is the length of the bed (not the column),
is the equivalent spherical diameter of the packing,
is the density of fluid,
is the dynamic viscosity of the fluid,
is the superficial velocity (i.e. the velocity that the fluid would have through the empty tube at the same volumetric flow rate), and
is the void fraction of the bed (bed porosity at any time).
Extension of the Ergun equation to fluidized beds is discussed by Akgiray and Saatçı (2001).
To calculate the pressure drop in a given reactor, the following equation may be deduced
See also
References
- S. Ergun, Chem. Process Eng. London 48, 89 1952. legacy.library.ucsf.edu/documentStore/e/f/k/.../Sefk76a99.pdf
- Ö. Akgiray and A. M. Saatçı, Water Science and Technology: Water Supply, Vol:1, Issue:2, pp. 65–72, 2001.