Signed zero: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
 
en>Trovatore
i think "unsigned" is confusing here -- unsigned (integer) representations are a separate issue; not clear what a signed zero has to do with them
Line 1: Line 1:
== Vibram Fivefingers  og nyttigt. Hvis du er en newbie ==
In [[mathematics]], a '''Klein geometry''' is a type of [[geometry]] motivated by [[Felix Klein]] in his influential [[Erlangen program]]. More specifically, it is a [[homogeneous space]] ''X'' together with a [[group action|transitive action]] on ''X'' by a [[Lie group]] ''G'', which acts as the [[symmetry group]] of the geometry.


Da jeg begyndte at arbejde ud med kaptajn Quinn seks uger siden, bemærkede jeg nogle reelle ændringer i min krop.. For dem, der ikke er bekendt med kan bruge blistex forkølelsessår herpes genitalis hos vejrtrækning svær hoste og highfever. Laura Fisher, en talskvinde for American Bankers Association, påpeger, at den type identitetstyveri, som kredit-fryser er beregnet til at afhjælpe en gerningsmand åbner en ny, svigagtigt konto i en forbruger navn for kun en lille procentdel af den samlede kredit-svindel.. <br><br>Hvis du gerne vil vide det aktuelle ventetid, kan du kontakte os, før du foretager dette [http://www.flex-godning.dk/menumachine/flexmenu/preview/cache.asp Vibram Fivefingers] køb. "Min gifte datter spiste middag på troperne i Lincoln og hun så Ernie sidder alene have middag," Frances siger. "Tænk" enkle, let at følge, og nyttigt. Hvis du er en newbie, der ønsker at skjule fra de mere advancedstudents, foreslår Montijano positionering din mat i bagsiden af ​​værelset. <br><br>Hvis en mægler tilbyder dig 30:1 gearing, betyder det, at hun er villig til at låne den erhvervsdrivende 30 gange det beløb forpligtet til handel. Francis udfordrede muslimske lærde til en test af sand religion med ild, men de trak sig tilbage .. "Hvad er stor om dem er, at det er ligegyldigt, hvad du er iført. <br><br>Clarke årsager til, at strategien er for vigtigt til at blive overladt til eksperter, ledere skal gøre det selv. Nu er det nemt at finde ting som kontakt os formularer, kontakt telefoner, Facebook og Twitter.. The City of Chandler Adult Sports program modtager flere henvendelser fra enkelte spillere (Gratis befuldmægtigede) som dig på daglig basis. <br><br>Din læge bør være den sidste person, du flov over at tale med om sundhedsmæssige spørgsmål, herunder rådgivning og hjælp med at tabe sig, men det betyder ikke, [http://www.viking-stamps.dk/Email/emotion.asp Ray Ban Wayfarer] det virker altid på den måde. Materiale Marcel Pagnol oprindelige trio af franske film om folk. <br><br>Schuster [http://www.marinedesign.dk/application/header.php Nike Air Force One] sagde en genvej ville være at modificere genomet af en elefant celle på 400.000 eller [http://www.flex-godning.dk/menumachine/flexmenu/preview/cache.asp Vibram Kso] flere steder, der er nødvendige for at gøre det ligne en gigantisk genom. Jeg havde bare brug for at forbinde med nogen, så jeg kiggede op et site for depression støtte og fundet denne. <br><br>Følelsesmæssig intelligens er et relativt nyt psykologisk begreb, men det er blevet bakket op af mange års forskning. Dette kan gøre hjemmebryggede spil frustrerende at spille. Mig, at han for at flowet frem tid tilbage selv anderledes. Stunt dine fremskridt afhænger af taxier til at give åh nej din bosætte sig. <br><br>Haha yeah, lige nu er jeg ved at blive tilbudt en chance for at vinde en tur til Hawaii fra FunSun ferier. 6.. Det må have været heldige, at de undfanget ugen de fik det! Jeg har planer om at sælge de fleste af hans tøj, da næsten alle af dem var helt nye og nogle han kun havde én gang før han voksede dem..<ul>
For background and motivation see the article on the [[Erlangen program]].
 
  <li>[http://studysupport.biz/nike-store-lobet-af-1997-var-hun-en-online-crusader-pa-cnet/ http://studysupport.biz/nike-store-lobet-af-1997-var-hun-en-online-crusader-pa-cnet/]</li>
 
  <li>[http://bbs.anjian.com/home.php?mod=spacecp&ac=blog&blogid= http://bbs.anjian.com/home.php?mod=spacecp&ac=blog&blogid=]</li>
 
  <li>[http://www.juegosetnicos.com.ar/spip.php?article87&lang=ru/ http://www.juegosetnicos.com.ar/spip.php?article87&lang=ru/]</li>
 
  <li>[http://www.ibiker.cn/thread-332672-1-1.html http://www.ibiker.cn/thread-332672-1-1.html]</li>
 
  <li>[http://verdamilio.net/tonio/spip.php?article1970/ http://verdamilio.net/tonio/spip.php?article1970/]</li>
 
</ul>


== Vibram Fivefingers  amerikanske hær embedsmænd bekræftede ==
==Formal definition==
A '''Klein geometry''' is a pair (''G'', ''H'') where ''G'' is a [[Lie group]] and ''H'' is a [[closed set|closed]] [[Lie subgroup]] of ''G'' such that the (left) [[coset space]] ''G''/''H'' is [[connected space|connected]]. The group ''G'' is called the '''principal group''' of the geometry and ''G''/''H'' is called the '''space''' of the geometry (or, by an abuse of terminology, simply the ''Klein geometry''). The space ''X'' = ''G''/''H'' of a Klein geometry is a [[smooth manifold]] of dimension
:dim ''X'' = dim ''G'' &minus; dim ''H''.


Når du har refereres pakken i en session du generelt kan ikke ændre pakken uden at ugyldiggøre det for den pågældende session. Dette er et særligt problem for udviklingsmiljøer hvor pakker ændres ofte, men også et problem for produktionsmiljøer, hvor du [http://www.flex-godning.dk/menumachine/flexmenu/preview/cache.asp Vibram Fivefingers] ønsker at gøre en lille plaster uden at tage hele miljøet ned. Bemærk, at denne fejl vil forekomme, selv når der ikke er fejl i de ændrede pakker.. <br><br>Hvilken opgave kan være den kører på et givet tidspunkt, når en anden venter opgave får en tur. Disse anmodninger styres af omfordeling en CPU fra en opgave til en anden kaldes en sammenhæng switch. Selv på computere med mere end én CPU (kaldet multiprocessor-maskiner), multitasking tillader mange flere opgaver, der [http://www.flex-godning.dk/menumachine/core/banner.asp Nike København] skal køres, end der er CPU'er.. <br><br>Interessant nok, den første konto dukkede den 8. Juli 1947, hvor embedsmænd i Roswell s flyveplads bekræftede opdagelsen af ​​en flyvende tallerken, der var styrtet ned. Som spekulation og rygter spredes, amerikanske hær embedsmænd bekræftede, at hvad de havde genvundet blot var en vejrballon.. <br><br>Har du hørt sige, 'Du er hvad du spiser?' Disse ord er fulde af sandhed. Ordentlig ernæring er vigtigt! Hvad du putter i din krop vil bestemme, hvordan du ser og føler, og kan enten hjælpe eller skade dig. Ønsker du at vide, hvad din krop har brug for, eller hvordan man kan gøre dig selv sundere inde og ude? Læs følgende artikel for nyttige forslag til at gøre netop det:. <br><br>Jeg leje et hus siden sidste august. Jeg har bemærket, når det spredes hårdt, tag lækket. Udlejer sagde, at han ville reparere taget og ikke har. Overvejende folk er forseglet med status opladet slukket, og det er ikke enden af ​​verden. De fleste af dem har genvundet fra disse spørgsmål. De. <br><br>Sponsorering virksomheder og agenturer vil have deres navn trykt på race skjorter for at vise tak og påskønnelse for deres givet støtte. Vores mål er at hæve $ 3.000 og modtag deltagelse hundredeoghalvtres ansøgere. Familier opfordres til at angive så hold for [http://www.marinedesign.dk/application/header.php Nike Air Force 1] 5K eller én mile gåtur. <br><br>At være i strid her, jeg lærte aldrig at røre type. Jeg prøvede at [http://www.flex-godning.dk/menumachine/flexmenu/preview/cache.asp Vibram Kso] lære én gang, men straks begyndte at få smerter i mine håndled, der hviler dem på skrivebordet til at påtage sig den korrekte håndstillinger lagde pres på alle vigtige karpaltunnel. Så jeg regner min pluk skrive mindst har nogle ergonomiske fordele. <br><br>Tjenesten bevarer de fleste af de oprindelige animationer i din præsentation, og tillader dig at tilføje lydspor eller voice overs til dine dias blot ved hjælp af en almindelig telefon. Enhver præsentation kan frit distribueres på internettet via e-mail eller ved hjælp af en standard stump indlejre kode. Du kan også sælge dine præsentationer via MyBrainshark enten gratis ved at registrere dig som Undervisningsudbyder eller ved tilmelding til en professionel konto.<ul>
There is a natural smooth [[group action|left action]] of ''G'' on ''X'' given by
 
:<math>g\cdot(aH) = (ga)H.</math>
  <li>[http://enseignement-lsf.com/spip.php?article66#forum23769654 http://enseignement-lsf.com/spip.php?article66#forum23769654]</li>
Clearly, this action is transitive (take ''a'' = 1), so that one may then regard ''X'' as a [[homogeneous space]] for the action of ''G''. The [[stabilizer (group theory)|stabilizer]] of the identity coset ''H'' &isin; ''X'' is precisely the group ''H''.
 
 
  <li>[http://freshnhottrends.com/activity/p/398045/ http://freshnhottrends.com/activity/p/398045/]</li>
Given any connected smooth manifold ''X'' and a smooth transitive action by a Lie group ''G'' on ''X'', we can construct an associated Klein geometry (''G'', ''H'') by fixing a basepoint ''x''<sub>0</sub> in ''X'' and letting ''H'' be the stabilizer subgroup of ''x''<sub>0</sub> in ''G''. The group ''H'' is necessarily a closed subgroup of ''G'' and ''X'' is naturally [[diffeomorphic]] to ''G''/''H''.
 
 
  <li>[http://bmd78.comyr.com/forum.php?mod=viewthread&tid=420505&fromuid=10468 http://bmd78.comyr.com/forum.php?mod=viewthread&tid=420505&fromuid=10468]</li>
Two Klein geometries (''G''<sub>1</sub>, ''H''<sub>1</sub>) and  (''G''<sub>2</sub>, ''H''<sub>2</sub>) are '''geometrically isomorphic''' if there is a [[Lie group isomorphism]] &phi; : ''G''<sub>1</sub> &rarr; ''G''<sub>2</sub> so that &phi;(''H''<sub>1</sub>) = ''H''<sub>2</sub>. In particular, if &phi; is [[conjugacy class|conjugation]] by an element ''g'' &isin; ''G'', we see that (''G'', ''H'') and (''G'', ''gHg''<sup>&minus;1</sup>) are isomorphic. The Klein geometry associated to a homogeneous space ''X'' is then unique up to isomorphism (i.e. it is independent of the chosen basepoint ''x''<sub>0</sub>).
 
 
  <li>[http://www.film-video-dvd-production.com/spip.php?article6/ http://www.film-video-dvd-production.com/spip.php?article6/]</li>
==Bundle description==
 
Given a Lie group ''G'' and closed subgroup ''H'', there is natural [[group action|right action]] of ''H'' on ''G'' given by right multiplication.  This action is both free and [[proper action|proper]]. The [[orbit (group theory)|orbits]] are simply the left [[coset]]s of ''H'' in ''G''. One concludes that ''G'' has the structure of a smooth [[principal bundle|principal ''H''-bundle]] over the left coset space ''G''/''H'':
  <li>[http://pcbbbs.net/read.php?tid=468/read.php?tid=468 http://pcbbbs.net/read.php?tid=468/read.php?tid=468]</li>
:<math>H\to G\to G/H.\,</math>
 
 
</ul>
==Types of Klein geometries==
===Effective geometries===
The action of ''G'' on ''X'' = ''G''/''H'' need not be effective. The '''kernel''' of a Klein geometry is defined to be the kernel of the action of ''G'' on ''X''. It is given by
:<math>K = \{k \in G : g^{-1}kg \in H\;\;\forall g \in G\}.</math>
The kernel ''K'' may also be described as the [[core (group)|core]] of ''H'' in ''G'' (i.e. the largest subgroup of ''H'' that is [[normal subgroup|normal]] in ''G''). It is the group generated by all the normal subgroups of ''G'' that lie in ''H''.
 
A Klein geometry is said to be '''effective''' if ''K'' = 1 and '''locally effective''' if ''K'' is [[discrete group|discrete]]. If (''G'', ''H'') is a Klein geometry with kernel ''K'', then (''G''/''K'', ''H''/''K'') is an effective Klein geometry canonically associated to (''G'', ''H'').
 
===Geometrically oriented geometries===
A Klein geometry (''G'', ''H'') is '''geometrically oriented''' if ''G'' is [[connected space|connected]]. (This does ''not'' imply that ''G''/''H'' is an [[orientability|oriented manifold]]). If ''H'' is connected it follows that ''G'' is also connected (this is because ''G''/''H'' is assumed to be connected, and ''G'' &rarr; ''G''/''H'' is a [[fibration]]).
 
Given any Klein geometry (''G'', ''H''), there is a geometrically oriented geometry canonically associated to (''G'', ''H'') with the same base space ''G''/''H''. This is the geometry (''G''<sub>0</sub>, ''G''<sub>0</sub> &cap; ''H'') where ''G''<sub>0</sub> is the [[identity component]] of ''G''. Note that ''G'' = ''G''<sub>0</sub> ''H''.
 
===Reductive geometries===
A Klein geometry (''G'', ''H'') is said to be '''reductive''' and ''G''/''H'' a '''reductive homogeneous space''' if the [[Lie algebra]] <math>\mathfrak h</math> of ''H'' has an ''H''-invariant complement in <math>\mathfrak g</math>.
 
== Examples ==
In the following table, there is a description of the classical geometries, modeled as Klein geometries.
 
{| class="wikitable" border="1"; text-align:center; margin:.5em 0 .5em 1em;"
|-
|
| '''Underlying space'''
| '''Transformation group ''G'''''
| '''Subgroup ''H'''''
| '''Invariants'''
|-
! ''[[Euclidean geometry]]''
|  [[Euclidean space]] <math>E(n)</math> || [[Euclidean group]] <math>\mathrm{Euc}(n)\simeq \mathrm{O}(n)\rtimes \R^n</math> || [[Orthogonal group]] <math>\mathrm{O}(n)</math> || Distances of [[Euclidean group|points]], [[angle]]s of [[Euclidean vector|vectors]]
|-
! ''[[Spherical geometry]]''
| [[Sphere]] <math>S^n</math> || Orthogonal group <math>\mathrm{O}(n+1)</math> || Orthogonal group <math>\mathrm{O}(n)</math> || Distances of points, angles of vectors
|-
! ''[[Conformal geometry]] on the sphere''
| [[Sphere]] <math>S^n</math> || [[Lorentz group]] of an <math>n+2</math> dimensional space <math>\mathrm{O}(n+1,1)</math> || A subgroup <math>P</math> fixing a [[Line (geometry)|line]] in the [[null cone]] of the Minkowski metric || Angles of vectors
|-
! ''[[Projective geometry]]''
| [[Real projective space]] <math>\mathbb{RP}^n</math> || [[Projective group]] <math>\mathrm{PGL}(n+1)</math>|| A subgroup <math>P</math> fixing a [[Flag (linear algebra)|flag]] <math>\{0\}\subset V_1\subset V_n</math> || [[Projective line]]s, [[Cross-ratio]]
|-
! ''[[Affine geometry]]''
| [[Affine space]] <math>A(n)\simeq\R^n</math> || [[Affine group]] <math>\mathrm{Aff}(n)\simeq \mathrm{GL}(n)\rtimes \R^n</math> || [[General linear group]] <math>\mathrm{GL}(n)</math> || Lines, Quotient of surface areas of geometric shapes, [[Center of mass]] of [[triangles]].
|-
! ''[[Hyperbolic geometry]]''
| [[Hyperbolic space]] <math>H(n)</math>, modeled e.g. as time-like lines in the [[Minkowski space]] <math>\R^{1,n}</math> || Lorentz group <math>\mathrm{O}(1,n)</math> || <math>\mathrm{O}(1)\times \mathrm{O}(n)</math> || Hyperbolic lines, hyperbolic circles, angles.  
|-
|}
 
==References==
*{{cite book | author=R. W. Sharpe | title=Differential Geometry: Cartan's Generalization of Klein's Erlangen Program | publisher=Springer-Verlag | year=1997 | isbn=0-387-94732-9}}
 
[[Category:Differential geometry]]
[[Category:Lie groups]]
[[Category:Homogeneous spaces]]

Revision as of 22:20, 20 January 2014

In mathematics, a Klein geometry is a type of geometry motivated by Felix Klein in his influential Erlangen program. More specifically, it is a homogeneous space X together with a transitive action on X by a Lie group G, which acts as the symmetry group of the geometry.

For background and motivation see the article on the Erlangen program.

Formal definition

A Klein geometry is a pair (G, H) where G is a Lie group and H is a closed Lie subgroup of G such that the (left) coset space G/H is connected. The group G is called the principal group of the geometry and G/H is called the space of the geometry (or, by an abuse of terminology, simply the Klein geometry). The space X = G/H of a Klein geometry is a smooth manifold of dimension

dim X = dim G − dim H.

There is a natural smooth left action of G on X given by

g(aH)=(ga)H.

Clearly, this action is transitive (take a = 1), so that one may then regard X as a homogeneous space for the action of G. The stabilizer of the identity coset HX is precisely the group H.

Given any connected smooth manifold X and a smooth transitive action by a Lie group G on X, we can construct an associated Klein geometry (G, H) by fixing a basepoint x0 in X and letting H be the stabilizer subgroup of x0 in G. The group H is necessarily a closed subgroup of G and X is naturally diffeomorphic to G/H.

Two Klein geometries (G1, H1) and (G2, H2) are geometrically isomorphic if there is a Lie group isomorphism φ : G1G2 so that φ(H1) = H2. In particular, if φ is conjugation by an element gG, we see that (G, H) and (G, gHg−1) are isomorphic. The Klein geometry associated to a homogeneous space X is then unique up to isomorphism (i.e. it is independent of the chosen basepoint x0).

Bundle description

Given a Lie group G and closed subgroup H, there is natural right action of H on G given by right multiplication. This action is both free and proper. The orbits are simply the left cosets of H in G. One concludes that G has the structure of a smooth principal H-bundle over the left coset space G/H:

HGG/H.

Types of Klein geometries

Effective geometries

The action of G on X = G/H need not be effective. The kernel of a Klein geometry is defined to be the kernel of the action of G on X. It is given by

K={kG:g1kgHgG}.

The kernel K may also be described as the core of H in G (i.e. the largest subgroup of H that is normal in G). It is the group generated by all the normal subgroups of G that lie in H.

A Klein geometry is said to be effective if K = 1 and locally effective if K is discrete. If (G, H) is a Klein geometry with kernel K, then (G/K, H/K) is an effective Klein geometry canonically associated to (G, H).

Geometrically oriented geometries

A Klein geometry (G, H) is geometrically oriented if G is connected. (This does not imply that G/H is an oriented manifold). If H is connected it follows that G is also connected (this is because G/H is assumed to be connected, and GG/H is a fibration).

Given any Klein geometry (G, H), there is a geometrically oriented geometry canonically associated to (G, H) with the same base space G/H. This is the geometry (G0, G0H) where G0 is the identity component of G. Note that G = G0 H.

Reductive geometries

A Klein geometry (G, H) is said to be reductive and G/H a reductive homogeneous space if the Lie algebra h of H has an H-invariant complement in g.

Examples

In the following table, there is a description of the classical geometries, modeled as Klein geometries.

Underlying space Transformation group G Subgroup H Invariants
Euclidean geometry Euclidean space E(n) Euclidean group Euc(n)O(n)n Orthogonal group O(n) Distances of points, angles of vectors
Spherical geometry Sphere Sn Orthogonal group O(n+1) Orthogonal group O(n) Distances of points, angles of vectors
Conformal geometry on the sphere Sphere Sn Lorentz group of an n+2 dimensional space O(n+1,1) A subgroup P fixing a line in the null cone of the Minkowski metric Angles of vectors
Projective geometry Real projective space n Projective group PGL(n+1) A subgroup P fixing a flag {0}V1Vn Projective lines, Cross-ratio
Affine geometry Affine space A(n)n Affine group Aff(n)GL(n)n General linear group GL(n) Lines, Quotient of surface areas of geometric shapes, Center of mass of triangles.
Hyperbolic geometry Hyperbolic space H(n), modeled e.g. as time-like lines in the Minkowski space 1,n Lorentz group O(1,n) O(1)×O(n) Hyperbolic lines, hyperbolic circles, angles.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534