Bipartite matroid: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Michael Hardy
lower case in heading where required by WP:MOS; rearranged the initial sentence to follow the bolding convention
 
en>John of Reading
m Computational complexity: Typo fixing, replaced: a independence oracle → an independence oracle using AWB (8686)
Line 1: Line 1:
To hear the black interior, the interior is black dirt, we point the car wash car buddies all right, no need to pursue all-black interior.<br>There are even out of box ideas that your bridesmaids would really love, such as if your bridesmaids enjoy sharing blessings, you can have charitable gifts in their names, you can give them a pampering gift by sending them to a spa.<br>http://southfloridanfp.org/coach/?key=cheap-coach-outlet-24 <br />  http://southfloridanfp.org/coach/?key=coach-outlet-1 <br />  http://southfloridanfp. If you liked this article and you would like to be given more info pertaining to [http://www.restaurantcalcuta.com/outlet/ugg.asp Cheap Uggs For Sale] kindly visit our web page. org/coach/?key=coach-discount-outlet-22 <br /> http://southfloridanfp.org/coach/?key=sunglasses-coach-outlet-104 <br />  http://southfloridanfp.org/coach/?key=coach-wallets-outlet-18 <br />
Calculations in the [[Newman–Penrose formalism|Newman–Penrose (NP) formalism]] of [[general relativity]] normally begin with the '''construction of a complex null tetrad''' <math>\{l^a,n^a,m^a,\bar{m}^a\}</math>, where <math>\{l^a,n^a\}</math> is a pair of ''real'' null vectors and <math>\{m^a,\bar{m}^a\}</math> is a pair of ''complex'' null vectors. These tetrad [[Vector field|vectors]] respect the following normalization and metric conditions assuming the spacetime signature <math>(-,+,+,+):</math>
 
*<math>l_a l^a=n_a n^a=m_a m^a=\bar{m}_a \bar{m}^a=0\,;</math>
*<math>l_a m^a=l_a \bar{m}^a=n_a m^a=n_a \bar{m}^a=0\,;</math>
*<math>l_a n^a=l^a n_a=-1\,,\;\; m_a \bar{m}^a=m^a \bar{m}_a=1\,;</math>
*<math>g_{ab}=-l_a  n_b - n_a  l_b +m_a  \bar{m}_b +\bar{m}_a  m_b\,,  \;\; g^{ab}=-l^a  n^b - n^a  l^b +m^a  \bar{m}^b +\bar{m}^a  m^b\,.</math>
 
Only after the tetrad <math>\{l^a,n^a,m^a,\bar{m}^a\}</math> gets constructed can one move forward to compute the [[Newman–Penrose_formalism#Four_directional_derivatives|directional derivatives]], [[Newman–Penrose_formalism#Twelve_spin_coefficients|spin coefficients]], [[Newman–Penrose_formalism#Commutators|commutators]], [[Weyl scalar|Weyl-NP scalars]] <math>\Psi_i</math>, [[Ricci scalars (Newman-Penrose formalism)|Ricci-NP scalars]] <math>\Phi_{ij}</math> and [[Newman–Penrose_formalism#Maxwell-NP_scalars.2C_Maxwell_equations_in_NP_formalism|Maxwell-NP scalars]] <math>\phi_i</math> and other quantities in NP formalism. There are three most commonly used methods to construct a complex null tetrad:
 
# All four tetrad vectors are [[Holonomic basis|nonholonomic]] combinations of [[Tetrad formalism|orthonormal holonomic tetrads]];<ref name=demystified>David McMahon. ''Relativity Demystified - A Self-Teaching Guide''. Chapter 9: ''Null Tetrads and the Petrov Classification''. New York: McGraw-Hill, 2006.</ref>
# <math>l^a</math> (or <math>n^a</math>) are aligned with the outgoing (or ingoing) tangent vector field of [[Null vector|null]] radial [[Geodesic (general relativity)|geodesics]], while <math>m^a</math> and <math>\bar{m}^a</math> are constructed via the nonholonomic method;<ref name=chandra>Subrahmanyan Chandrasekhar. ''The Mathematical Theory of Black Holes''. Section ξ20, Section ξ21, Section ξ41, Section ξ56, Section ξ63(b). Chicago: University of Chikago Press, 1983.</ref>
# A tetrad which is adapted to the spacetime structure from a 3+1 perspective, with its general form being assumed and tetrad functions therein to be solved.
 
In the context below, it will be shown how these three methods work.
 
Note: In addition to the convention <math>\{(-,+,+,+); l^a n_a=-1\,,m^a \bar{m}_a=1\}</math> employed in this article, the other one in use is <math>\{(+,-,-,-); l^a n_a=1\,,m^a \bar{m}_a=-1\}</math>.
 
==Nonholonomic tetrad==
 
The primary method to construct a complex null tetrad is via combinations of orthonormal bases.<ref name="demystified" /> For a spacetime <math>g_{ab}</math> with an orthonormal tetrad <math>\{\omega_0\,,\omega_1\,,\omega_2\,,\omega_3 \}</math>,
 
<math>g_{ab}=-\omega_0\omega_0+\omega_1\omega_1+\omega_2\omega_2+\omega_3\omega_3\,,</math>
 
the covectors <math>\{l_a\,,n_a\,,m_a\,,\bar{m}_a\}</math> of the ''nonholonomic'' complex null tetrad can be constructed by
 
<math>l_adx^a=\frac{\omega_0+\omega_1}{\sqrt{2}}\,,\quad n_adx^a=\frac{\omega_0-\omega_1}{\sqrt{2}}\,,</math><br />
<math>m_adx^a=\frac{\omega_2+i\omega_3}{\sqrt{2}}\,,\quad \bar{m}_adx^a=\frac{\omega_2-i\omega_3}{\sqrt{2}}\,,</math>
 
and the tetrad vectors <math>\{l^a\,,n^a\,,m^a\,,\bar{m}^a\}</math> can be obtained by raising the indices of <math>\{l_a\,,n_a\,,m_a\,,\bar{m}_a\}</math> via the inverse metric <math>g^{ab}</math>.
 
Remark: The nonholonomic construction is actually in accordance with the local [[light cone]] structure.<ref name="demystified" />
 
<div style="clear:both;width:65%;" class="NavFrame collapsed">
<div class="NavHead" style="background-color:#FFFFFF; text-align:left; font-size:larger;">Example: A nonholonomic tetrad</div>
<div class="NavContent" style="text-align:left;">
Given a spacetime metric of the form (in signature(-,+,+,+))
:<math>g_{ab}=-g_{tt}dt^2+g_{rr}dr^2+g_{\theta\theta}d\theta^2+g_{\phi\phi}d\phi^2\,,</math>
 
the nonholonomic orthonormal covectors are therefore
:<math>\omega_t=\sqrt{g_{tt}}dt\,,\;\;\omega_r=\sqrt{g_{rr}}dr\,,\;\;\omega_\theta=\sqrt{g_{\theta\theta}}d\theta\,,\;\;\omega_\phi=\sqrt{g_{\phi\phi}}d\phi\,,</math>
 
and the nonholonomic null covectors are therefore
 
:<math>l_adx^a=\frac{1}{\sqrt{2}}(\sqrt{g_{tt}}dt+\sqrt{g_{rr}}dr)\,,</math>  <math> n_adx^a=\frac{1}{\sqrt{2}}(\sqrt{g_{tt}}dt-\sqrt{g_{rr}}dr)\,,</math>
:<math>m_adx^a=\frac{1}{\sqrt{2}}(\sqrt{g_{\theta\theta}}d\theta+i\sqrt{g_{\phi\phi}}d\phi)\,,</math>    <math>  \bar{m}_adx^a=\frac{1}{\sqrt{2}}(\sqrt{g_{\theta\theta}}d\theta-i\sqrt{g_{\phi\phi}}d\phi)\,.</math>
 
</div>
</div>
 
==l<sup>a</sup> (n<sup>a</sup>) aligned with null radial geodesics==
 
In [[Minkowski spacetime]], the nonholonomically constructed null vectors <math>\{l^a\,,n^a\}</math> respectively match the outgoing and ingoing ''null radial'' rays. As an extension of this idea in generic curved spacetimes,  <math>\{l^a\,,n^a\}</math> can still be aligned with the tangent vector field of null radial [[Congruence (general relativity)|congruence]].<ref name="chandra" /> However, this types of adaption only work for <math>\{t,r,\theta,\phi\}</math>, <math>\{u,r,\theta,\phi\}</math> or <math>\{v,r,\theta,\phi\}</math> coordinates where the ''radial'' behaviors can be well described, with <math>u</math> and <math>v</math> denote the outgoing (retarded) and ingoing (advanced) null coordinate respectively.
 
<div style="clear:both;width:65%;" class="NavFrame collapsed">
<div class="NavHead" style="background-color:#FFFFFF; text-align:left; font-size:larger;">Example: Null tetrad for Schwarzschild metric  in Eddington-Finkestein coordinates </div>
<div class="NavContent" style="text-align:left;">
 
The Schwarzschild metric in Eddington-Finkestein coordinates reads
 
<math>ds^2=-Fdv^2+2dvdr+r^2(d\theta^2+\sin^2\!\theta\,d\phi^2)\,,\;\;\text{with } F\,:=\,\Big(1-\frac{M}{r} \Big)^2\,,</math>
 
so the Lagrangian for null radial [[Geodesics in general relativity|geodesics]] of the Schwarzschild spacetime is
 
<math>L=-F\dot{v}^2+2\dot{v}\dot{r}\,,</math>
 
which has an ''ingoing'' solution <math>\dot{v}=0</math> and an outgoing solution <math>\dot{r}=\frac{F}{2}\dot{v}</math>. Now, we can construct a complex null tetrad which is adapted to the ingoing null radial geodesics:
 
<math>l^a=(1,\frac{F}{2},0,0)\,,\quad n^a=(0,-1,0,0)\,,\quad m^a=\frac{1}{\sqrt{2}\,r}(0,0,1,i\,\csc\theta)\,,</math> 
 
and the dual basis covectors are therefore
 
<math>l_a=(-\frac{F}{2},1,0,0)\,,\quad n_a=(-1,0,0,0)\,,\quad m_a=\frac{r}{\sqrt{2}}(0,0,1,\sin\theta)\,.</math>
 
Here we utilized the cross-normalization condition <math>l^an_a=n^al_a=-1</math> as well as  the requirement that <math>g_{ab}+l_an_b+n_al_b</math> should span the induced metric <math>h_{AB}</math> for cross-sections of  {v=constant, r=constant}, where it is important to recall that <math>dv</math> and <math>dr</math> are not mutually orthogonal. Also, the remaining two tetrad (co)vectors is constructed nonholonomically. With the tetrad defined, we are now able to respectively find out the spin coefficients, Weyl-Np scalars and Ricci-NP scalars that
 
<math>\kappa=\sigma=\tau=0\,,\quad \nu=\lambda=\pi=0\,,\quad \gamma=0 </math><br />
<math>\rho=\frac{-r+2M}{2r^2}\,,\quad \mu=-\frac{1}{r}\,,\quad \alpha=-\beta=\frac{-\sqrt{2}\cot\theta}{4r}\,,\quad \varepsilon=\frac{M}{2r^2}\,;</math>
 
<math>\Psi_0=\Psi_1=\Psi_3=\Psi_4=0\,,\quad \Psi_2=-\frac{M}{r^3}\,,</math>
 
<math>\Phi_{00}=\Phi_{10}=\Phi_{20}=\Phi_{11}=\Phi_{12}=\Phi_{22}=\Lambda=0 \,.</math>
 
</div>
</div>
 
<div style="clear:both;width:65%;" class="NavFrame collapsed">
<div class="NavHead" style="background-color:#FFFFFF; text-align:left; font-size:larger;">Example: Null tetrad for extremal Reissner-Nordström metric in Eddington-Finkestein coordinates</div>
<div class="NavContent" style="text-align:left;">
 
The Reissner-Nordström metric in ingoing Eddington-Finkestein coordinates reads
 
:<math>ds^2=- G dv^2+2dvdr+r^2 d\theta^2+r^2\sin^2\!\theta\,d\phi^2\,,\;\;\text{with } G\,:=\,\Big(1-\frac{M}{r} \Big)^2\,,</math>
 
so the Lagrangian is
 
:<math>2L=- G \dot v^2+2\dot v \dot r+r^2 ({\dot\theta}^2+r^2\sin^2\!\theta\,\dot\phi^2\,.</math>
 
For null radial geodesics with <math>\{L=0\,,\dot\theta=0\,,\dot\phi=0\}</math>, we have two solutions
 
:<math>\dot v=0</math> (ingoing) and <math>\dot r=2F\dot v</math> (outgoing),
 
and therefore the tetrad for an ingoing observer can be set up as
:<math>l^a\partial_a\,=\, \Big(1\,,\frac{F}{2}\,,0\,,0  \Big)\,,\quad  n^a\partial_a\,=\,\Big(0\,,-1\,,0\,,0  \Big)\,, </math>
:<math>l_adx^a\,=\, \Big(-\frac{F}{2}\,,1\,,0,0  \Big)\,,\quad n_adx^a\,=\,\Big(-1\,,0\,,0\,,0  \Big)\,,</math>
:<math>m^a\partial_a\,=\,\frac{1}{\sqrt{2}}\, \Big(0\,,0\,,\frac{1}{r}\,,\frac{i}{r\sin\theta} \Big)  \,,\quad m_a dx^a\,=\,\frac{1}{\sqrt{2}}\,\Big(0\,,0\,,r\,,i\sin\theta \Big)\,.</math>
 
With the tetrad defined, we are now able to work out the spin coefficients, Weyl-NP scalars and Ricci-NP scalars that
 
<math>\kappa=\sigma=\tau=0\,,\quad \nu=\lambda=\pi=0\,,\quad \gamma=0 </math><br />
<math>\rho=\frac{(r-M)^2}{2r^3}\,,\quad \mu=-\frac{1}{r}\,,\quad \alpha=-\beta=\frac{-\sqrt{2}\cot\theta}{4r}\,,\quad \varepsilon=\frac{M(r-M)}{2r^3}\,;</math>
 
<math>\Psi_0=\Psi_1=\Psi_3=\Psi_4=0\,,\quad \Psi_2=-\frac{(Mr-M)}{r^4}\,,</math>
 
<math>\Phi_{00}=\Phi_{10}=\Phi_{20}=\Phi_{12}=\Phi_{22}=\Lambda=0 \,,\quad \Phi_{11}=-\frac{M^2}{2r^4} \,.</math>
 
</div>
</div>
 
==Tetrads adapted to the spacetime structure==
 
At some typical boundary regions such as [[Null vector|null]] infinity, [[Timelike Infinity|timelike infinity]], [[Spacelike vector|spacelike]] infinity, [[black hole]] horizons and [[cosmological horizon]]s, null tetrads adapted to spacetime structures are usually employed to achieve the most succinct [[Newman-Penrose formalism|Newman-Penrose]] descriptions.
 
===Newman-Unti tetrad for null infinity===
 
For null infinity, the classic Newman-Unti (NU) tetrad<ref>Ezra T Newman, Theodore W J Unti. ''Behavior of asymptotically flat empty spaces''. Journal of Mathematical Physics, 1962, '''3'''(5): 891-901.</ref><ref>Ezra T Newman, Roger Penrose. ''An Approach to Gravitational Radiation by a Method of Spin Coefficients''.  Section IV. Journal of Mathematical Physics, 1962, '''3'''(3): 566-768.</ref><ref name=AppendixB>E T Newman, K P Tod. ''Asymptotically Flat Spacetimes'', Appendix B. In A Held (Editor): ''General relativity and gravitation: one hundred years after the birth of Albert Einstein''. Vol(2), page 1-34.  New York and London:  Plenum Press, 1980.</ref> is employed to study [[asymptotic behavior]]s at ''null infinity'',
 
<math>l^a\partial_a=\partial_r:=D\,,</math><br />
<math>n^a\partial_a=\partial_u +U\partial_r +X\partial_\varsigma+\bar{X} \partial_{\bar \varsigma}:=\Delta\,,</math><br />
<math>m^a\partial_a=\omega\partial_r+\xi^3\partial_\varsigma +\xi^4\partial_{\bar \varsigma}:=\delta\,,</math><br />
<math>\bar{m}^a\partial_a=\bar{\omega}\partial_r+\bar{\xi}^3\partial_{\bar\varsigma} +\bar{\xi}^4\partial_{ \varsigma}:=\bar\delta\,,</math>
 
where <math>\{U, X, \omega, \xi^3, \xi^4\}</math> are tetrad functions to be solved. For the NU tetrad, the foliation leaves are parameterized by the ''outgoing'' (advanced) null coordinate <math>u</math> with <math>l_a=du</math>, and <math>r</math> is the normalized [[Affine parameter|affine]] coordinate along <math>l^a</math> <math>(Dr=l^a\partial_ar=1)</math>; the ingoing null vector <math>n^a</math> acts as the null generator  at null infinity with <math>\Delta u=n^a\partial_a u=1</math>. The coordinates <math>\{u,r,\varsigma, \bar{\varsigma}\}</math> comprise two real affine coordinates <math>\{u,r\}</math> and two complex [[stereographic]] coordinates <math>\{\varsigma:= e^{i\phi}\cot\frac{\theta}{2}, \bar{\varsigma}=e^{-i\phi}\cot\frac{\theta}{2}\}</math>, where <math>\{\theta,\phi\}</math> are the usual spherical coordinates on the cross-section <math>\hat\Delta_u=S^2_u</math> (as shown in ref.,<ref name="AppendixB" /> ''complex stereographic'' rather than ''real [[Isothermal coordinates|isothermal]]'' coordinates are used just for the convenience of completely solving NP equations).
 
Also, for the NU tetrad, the basic gauge conditions  are
 
<math>\kappa=\pi=\varepsilon=0\,,\quad \rho=\bar\rho\,,\quad \tau=\bar\alpha+\beta\,.</math>
 
=== Adapted tetrad for exteriors and near-horizon vicinity of isolated horizons ===
 
For a more comprehensive view of black holes in quasilocal definitions, adapted tetrads which can be smoothly transited from the exterior to the [[Near-horizon metric|near-horizon vicinity]] and to the horizons are required. For example, for [[isolated horizons]] describing black holes in equilibrium with their exteriors, such a tetrad and the related coordinates can be constructed this way.<ref>Xiaoning Wu, Sijie Gao. ''Tunneling effect near weakly isolated horizon''. Physical Review D, 2007, '''75'''(4): 044027. [http://arxiv.org/abs/gr-qc/0702033 arXiv:gr-qc/0702033v1]</ref><ref>Xiaoning Wu, Chao-Guang Huang, Jia-Rui Sun. ''On gravitational anomaly and Hawking radiation near weakly isolated horizon''. Physical Review D, 2008, '''77'''(12): 124023. [http://arxiv.org/abs/0801.1347 arXiv:0801.1347v1(gr-qc)]</ref><ref>Yu-Huei Wu, Chih-Hung Wang. ''Gravitational radiation of generic isolated horizons''. [http://arxiv.org/abs/0807.2649 arXiv:0807.2649v1(gr-qc)]</ref><ref>Xiao-Ning Wu, Yu Tian. ''Extremal isolated horizon/CFT correspondence''. Physical Review D, 2009, '''80'''(2): 024014. [http://arxiv.org/abs/0904.1554v3 arXiv: 0904.1554(hep-th)]</ref><ref>Yu-Huei Wu, Chih-Hung Wang. ''Gravitational radiations of generic isolated horizons and non-rotating dynamical horizons from asymptotic expansions''. Physical Review D, 2009, '''80'''(6): 063002. [http://arxiv.org/abs/0906.1551 arXiv:0906.1551v1(gr-qc)]</ref><ref>Badri Krishnan. ''The spacetime in the neighborhood of a general isolated black hole''. [http://arxiv.org/abs/1204.4345 arXiv:1204.4345v1 (gr-qc)]</ref> Choose the first real null covector <math>n_a</math> as the gradient of foliation leaves
 
<math>
n_a\,=-dv  \,,
</math><br />
where <math>v</math> is the ''ingoing'' (retarded) [[Eddington-Finkelstein coordinates|Eddington-Finkelstein-type]] null coordinate, which labels the foliation cross-sections and acts as an affine parameter with regard to the outgoing null vector field <math>l^a\partial_a</math>, i.e.
 
<math>
Dv=1 \,,\quad \Delta v=\delta v=\bar\delta v=0\,.
</math><br />
Introduce the second coordinate <math>r</math> as an affine parameter along the ingoing null vector field <math>n^a</math>, which obeys the normalization
 
<math>
n^a\partial_a r \,=\,-1 \; \Leftrightarrow\; n^a\partial_a \,=\, -\partial_r\,.
</math>
 
Now, the first real null tetrad vector <math>n^a</math> is fixed. To determine the remaining tetrad vectors <math>\{l^a,m^a,\bar m^a\}</math> and their covectors, besides the basic cross-normalization conditions, it is also required that: (i) the outgoing null normal field <math>l^a</math> acts as the null generators; (ii) the null frame (covectors) <math>\{l_a, n_a, m_a, \bar m_a\}</math> are parallelly propagated along <math>n^a\partial_a</math>; (iii) <math>\{m^a,\bar m^a\}</math> spans  the {t=constant, r=constant} cross-sections  which are labeled by ''real'' [[isothermal coordinates]] <math>\{y,z\}</math>.
 
Tetrads satisfying the above restrictions can be expressed in the general form that
 
<math>l^a\partial_a=\partial_v +U\partial_r +X^3\partial_y+X^4 \partial_{ z }\, := \,D \,,</math><br />
<math>n^a\partial_a=-\partial_r\, := \,\Delta \,,</math><br />
<math>m^a\partial_a=\Omega\partial_r+\xi^3\partial_y +\xi^4\partial_{ z } \, := \,\delta \,,</math><br />
<math>\bar{m}^a\partial_a=\bar{\Omega}\partial_r +\bar{\xi}^3\partial_{ y}+\bar{\xi}^4\partial_{ z } \, := \,\bar\delta \,.</math>
 
The gauge conditions in this tetrad are
 
<math>\nu=\tau=\gamma=0\,,\quad \mu=\bar\mu\,,\quad \pi=\alpha+\bar\beta\,,</math>
 
Remark: Unlike [[Schwarzschild coordinates|Schwarzschild-type coordinates]], here r=0 represents the [[Event horizon|horizon]], while r>0 (r<0) corresponds to the exterior (interior) of an isolated horizon.  People often [[Taylor expansion|Taylor]] expand a scalar  <math>Q</math> function  with respect to the horizon r=0,
 
<math>
Q=\sum_{i=0} Q^{(i)}r^i=Q^{(0)}+Q^{(1)}r+\cdots +Q^{(n)}r^n+\ldots
</math>
 
where <math>Q^{(0)}</math> refers to its on-horizon value. The very coordinates used in the adapted tetrad above are actually the [[Gaussian null coordinates]] employed in studying near-horizon geometry and mechanics of black holes.
 
==See also==
*[[Newman-Penrose formalism]]
 
==References==
{{reflist}}
 
[[Category:General relativity]]
[[Category:Mathematical methods in general relativity]]

Revision as of 13:09, 1 March 2013

Calculations in the Newman–Penrose (NP) formalism of general relativity normally begin with the construction of a complex null tetrad {la,na,ma,m¯a}, where {la,na} is a pair of real null vectors and {ma,m¯a} is a pair of complex null vectors. These tetrad vectors respect the following normalization and metric conditions assuming the spacetime signature (,+,+,+):

Only after the tetrad {la,na,ma,m¯a} gets constructed can one move forward to compute the directional derivatives, spin coefficients, commutators, Weyl-NP scalars Ψi, Ricci-NP scalars Φij and Maxwell-NP scalars ϕi and other quantities in NP formalism. There are three most commonly used methods to construct a complex null tetrad:

  1. All four tetrad vectors are nonholonomic combinations of orthonormal holonomic tetrads;[1]
  2. la (or na) are aligned with the outgoing (or ingoing) tangent vector field of null radial geodesics, while ma and m¯a are constructed via the nonholonomic method;[2]
  3. A tetrad which is adapted to the spacetime structure from a 3+1 perspective, with its general form being assumed and tetrad functions therein to be solved.

In the context below, it will be shown how these three methods work.

Note: In addition to the convention {(,+,+,+);lana=1,mam¯a=1} employed in this article, the other one in use is {(+,,,);lana=1,mam¯a=1}.

Nonholonomic tetrad

The primary method to construct a complex null tetrad is via combinations of orthonormal bases.[1] For a spacetime gab with an orthonormal tetrad {ω0,ω1,ω2,ω3},

gab=ω0ω0+ω1ω1+ω2ω2+ω3ω3,

the covectors {la,na,ma,m¯a} of the nonholonomic complex null tetrad can be constructed by

ladxa=ω0+ω12,nadxa=ω0ω12,
madxa=ω2+iω32,m¯adxa=ω2iω32,

and the tetrad vectors {la,na,ma,m¯a} can be obtained by raising the indices of {la,na,ma,m¯a} via the inverse metric gab.

Remark: The nonholonomic construction is actually in accordance with the local light cone structure.[1]

la (na) aligned with null radial geodesics

In Minkowski spacetime, the nonholonomically constructed null vectors {la,na} respectively match the outgoing and ingoing null radial rays. As an extension of this idea in generic curved spacetimes, {la,na} can still be aligned with the tangent vector field of null radial congruence.[2] However, this types of adaption only work for {t,r,θ,ϕ}, {u,r,θ,ϕ} or {v,r,θ,ϕ} coordinates where the radial behaviors can be well described, with u and v denote the outgoing (retarded) and ingoing (advanced) null coordinate respectively.

Tetrads adapted to the spacetime structure

At some typical boundary regions such as null infinity, timelike infinity, spacelike infinity, black hole horizons and cosmological horizons, null tetrads adapted to spacetime structures are usually employed to achieve the most succinct Newman-Penrose descriptions.

Newman-Unti tetrad for null infinity

For null infinity, the classic Newman-Unti (NU) tetrad[3][4][5] is employed to study asymptotic behaviors at null infinity,

laa=r:=D,
naa=u+Ur+Xς+X¯ς¯:=Δ,
maa=ωr+ξ3ς+ξ4ς¯:=δ,
m¯aa=ω¯r+ξ¯3ς¯+ξ¯4ς:=δ¯,

where {U,X,ω,ξ3,ξ4} are tetrad functions to be solved. For the NU tetrad, the foliation leaves are parameterized by the outgoing (advanced) null coordinate u with la=du, and r is the normalized affine coordinate along la (Dr=laar=1); the ingoing null vector na acts as the null generator at null infinity with Δu=naau=1. The coordinates {u,r,ς,ς¯} comprise two real affine coordinates {u,r} and two complex stereographic coordinates {ς:=eiϕcotθ2,ς¯=eiϕcotθ2}, where {θ,ϕ} are the usual spherical coordinates on the cross-section Δ^u=Su2 (as shown in ref.,[5] complex stereographic rather than real isothermal coordinates are used just for the convenience of completely solving NP equations).

Also, for the NU tetrad, the basic gauge conditions are

κ=π=ε=0,ρ=ρ¯,τ=α¯+β.

Adapted tetrad for exteriors and near-horizon vicinity of isolated horizons

For a more comprehensive view of black holes in quasilocal definitions, adapted tetrads which can be smoothly transited from the exterior to the near-horizon vicinity and to the horizons are required. For example, for isolated horizons describing black holes in equilibrium with their exteriors, such a tetrad and the related coordinates can be constructed this way.[6][7][8][9][10][11] Choose the first real null covector na as the gradient of foliation leaves

na=dv,
where v is the ingoing (retarded) Eddington-Finkelstein-type null coordinate, which labels the foliation cross-sections and acts as an affine parameter with regard to the outgoing null vector field laa, i.e.

Dv=1,Δv=δv=δ¯v=0.
Introduce the second coordinate r as an affine parameter along the ingoing null vector field na, which obeys the normalization

naar=1naa=r.

Now, the first real null tetrad vector na is fixed. To determine the remaining tetrad vectors {la,ma,m¯a} and their covectors, besides the basic cross-normalization conditions, it is also required that: (i) the outgoing null normal field la acts as the null generators; (ii) the null frame (covectors) {la,na,ma,m¯a} are parallelly propagated along naa; (iii) {ma,m¯a} spans the {t=constant, r=constant} cross-sections which are labeled by real isothermal coordinates {y,z}.

Tetrads satisfying the above restrictions can be expressed in the general form that

laa=v+Ur+X3y+X4z:=D,
naa=r:=Δ,
maa=Ωr+ξ3y+ξ4z:=δ,
m¯aa=Ω¯r+ξ¯3y+ξ¯4z:=δ¯.

The gauge conditions in this tetrad are

ν=τ=γ=0,μ=μ¯,π=α+β¯,

Remark: Unlike Schwarzschild-type coordinates, here r=0 represents the horizon, while r>0 (r<0) corresponds to the exterior (interior) of an isolated horizon. People often Taylor expand a scalar Q function with respect to the horizon r=0,

Q=i=0Q(i)ri=Q(0)+Q(1)r++Q(n)rn+

where Q(0) refers to its on-horizon value. The very coordinates used in the adapted tetrad above are actually the Gaussian null coordinates employed in studying near-horizon geometry and mechanics of black holes.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  1. 1.0 1.1 1.2 David McMahon. Relativity Demystified - A Self-Teaching Guide. Chapter 9: Null Tetrads and the Petrov Classification. New York: McGraw-Hill, 2006.
  2. 2.0 2.1 Subrahmanyan Chandrasekhar. The Mathematical Theory of Black Holes. Section ξ20, Section ξ21, Section ξ41, Section ξ56, Section ξ63(b). Chicago: University of Chikago Press, 1983.
  3. Ezra T Newman, Theodore W J Unti. Behavior of asymptotically flat empty spaces. Journal of Mathematical Physics, 1962, 3(5): 891-901.
  4. Ezra T Newman, Roger Penrose. An Approach to Gravitational Radiation by a Method of Spin Coefficients. Section IV. Journal of Mathematical Physics, 1962, 3(3): 566-768.
  5. 5.0 5.1 E T Newman, K P Tod. Asymptotically Flat Spacetimes, Appendix B. In A Held (Editor): General relativity and gravitation: one hundred years after the birth of Albert Einstein. Vol(2), page 1-34. New York and London: Plenum Press, 1980.
  6. Xiaoning Wu, Sijie Gao. Tunneling effect near weakly isolated horizon. Physical Review D, 2007, 75(4): 044027. arXiv:gr-qc/0702033v1
  7. Xiaoning Wu, Chao-Guang Huang, Jia-Rui Sun. On gravitational anomaly and Hawking radiation near weakly isolated horizon. Physical Review D, 2008, 77(12): 124023. arXiv:0801.1347v1(gr-qc)
  8. Yu-Huei Wu, Chih-Hung Wang. Gravitational radiation of generic isolated horizons. arXiv:0807.2649v1(gr-qc)
  9. Xiao-Ning Wu, Yu Tian. Extremal isolated horizon/CFT correspondence. Physical Review D, 2009, 80(2): 024014. arXiv: 0904.1554(hep-th)
  10. Yu-Huei Wu, Chih-Hung Wang. Gravitational radiations of generic isolated horizons and non-rotating dynamical horizons from asymptotic expansions. Physical Review D, 2009, 80(6): 063002. arXiv:0906.1551v1(gr-qc)
  11. Badri Krishnan. The spacetime in the neighborhood of a general isolated black hole. arXiv:1204.4345v1 (gr-qc)