Richard P. Brent: Difference between revisions
en>Phil Boswell m convert dodgy URL to ID using AWB |
en>Addbot |
||
Line 1: | Line 1: | ||
In [[Riemannian geometry]], a '''Jacobi field''' is a [[vector field]] along a [[geodesic]] <math>\gamma</math> in a [[Riemannian manifold]] describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after [[Carl Gustav Jacob Jacobi|Carl Jacobi]]. | |||
==Definitions and properties== | |||
Jacobi fields can be obtained in the following way: Take a [[smooth function|smooth]] one parameter family of geodesics <math>\gamma_\tau</math> with <math>\gamma_0=\gamma</math>, then | |||
:<math>J(t)=\left.\frac{\partial\gamma_\tau(t)}{\partial \tau}\right|_{\tau=0}</math> | |||
is a Jacobi field, and describes the behavior of the geodesics in an infinitesimal neighborhood of a | |||
given geodesic <math>\gamma</math>. | |||
A vector field ''J'' along a geodesic <math>\gamma</math> is said to be a '''Jacobi field''' if it satisfies the '''Jacobi equation''': | |||
:<math>\frac{D^2}{dt^2}J(t)+R(J(t),\dot\gamma(t))\dot\gamma(t)=0,</math> | |||
where ''D'' denotes the [[covariant derivative]] with respect to the [[Levi-Civita connection]], ''R'' the [[Riemann curvature tensor]], <math>\dot\gamma(t)=d\gamma(t)/dt</math> the tangent vector field, and ''t'' is the parameter of the geodesic. | |||
On a [[Complete space|complete]] Riemannian manifold, for any Jacobi field there is a family of geodesics <math>\gamma_\tau</math> describing the field (as in the preceding paragraph). | |||
The Jacobi equation is a [[linear differential equation|linear]], second order [[ordinary differential equation|ordinary]] [[differential equation]]; | |||
in particular, values of <math>J</math> and <math>\frac{D}{dt}J</math> at one point of <math>\gamma</math> uniquely determine the Jacobi field. Furthermore, the set of Jacobi fields along a given geodesic forms a real [[vector space]] of dimension twice the dimension of the manifold. | |||
As trivial examples of Jacobi fields one can consider <math>\dot\gamma(t)</math> and <math>t\dot\gamma(t)</math>. These correspond respectively to the following families of reparametrisations: <math>\gamma_\tau(t)=\gamma(\tau+t)</math> and <math>\gamma_\tau(t)=\gamma((1+\tau)t)</math>. | |||
Any Jacobi field <math>J</math> can be represented in a unique way as a sum <math>T+I</math>, where <math>T=a\dot\gamma(t)+bt\dot\gamma(t)</math> is a linear combination of trivial Jacobi fields and <math>I(t)</math> is orthogonal to <math>\dot\gamma(t)</math>, for all <math>t</math>. | |||
The field <math>I</math> then corresponds to the same variation of geodesics as <math>J</math>, only with changed parameterizations. | |||
==Motivating example== | |||
On a [[sphere]], the [[geodesic]]s through the North pole are [[great circle]]s. Consider two such geodesics <math>\gamma_0</math> and <math>\gamma_\tau</math> with natural parameter, <math>t\in [0,\pi]</math>, separated by an angle <math>\tau</math>. The geodesic distance | |||
:<math>d(\gamma_0(t),\gamma_\tau(t)) \,</math> | |||
is | |||
:<math>d(\gamma_0(t),\gamma_\tau(t))=\sin^{-1}\bigg(\sin t\sin\tau\sqrt{1+\cos^2 t\tan^2(\tau/2)}\bigg).</math> | |||
Computing this requires knowing the geodesics. The most interesting information is just that | |||
:<math>d(\gamma_0(\pi),\gamma_\tau(\pi))=0 \,</math>, for any <math>\tau</math>. | |||
Instead, we can consider the [[derivative]] with respect to <math>\tau</math> at <math>\tau=0</math>: | |||
:<math>\frac{\partial}{\partial\tau}\bigg|_{\tau=0}d(\gamma_0(t),\gamma_\tau(t))=|J(t)|=\sin t.</math> | |||
Notice that we still detect the [[intersection (set theory)|intersection]] of the geodesics at <math>t=\pi</math>. Notice further that to calculate this derivative we do not actually need to know | |||
:<math>d(\gamma_0(t),\gamma_\tau(t)) \,</math>, | |||
rather, all we need do is solve the equation | |||
:<math>y''+y=0 \,</math>, | |||
for some given initial data. | |||
Jacobi fields give a natural generalization of this phenomenon to arbitrary [[Riemannian manifold]]s. | |||
==Solving the Jacobi equation== | |||
Let <math>e_1(0)=\dot\gamma(0)/|\dot\gamma(0)|</math> and complete this to get an [[orthonormal]] basis <math>\big\{e_i(0)\big\}</math> at <math>T_{\gamma(0)}M</math>. [[Parallel transport]] it to get a basis <math>\{e_i(t)\}</math> all along <math>\gamma</math>. | |||
This gives an orthonormal basis with <math>e_1(t)=\dot\gamma(t)/|\dot\gamma(t)|</math>. The Jacobi field can be written in co-ordinates in terms of this basis as <math>J(t)=y^k(t)e_k(t)</math> and thus | |||
:<math>\frac{D}{dt}J=\sum_k\frac{dy^k}{dt}e_k(t),\quad\frac{D^2}{dt^2}J=\sum_k\frac{d^2y^k}{dt^2}e_k(t),</math> | |||
and the Jacobi equation can be rewritten as a system | |||
:<math>\frac{d^2y^k}{dt^2}+|\dot\gamma|^2\sum_j y^j(t)\langle R(e_j(t),e_1(t))e_1(t),e_k(t)\rangle=0</math> | |||
for each <math>k</math>. This way we get a linear ordinary differential equation (ODE). | |||
Since this ODE has [[smooth function|smooth]] [[coefficient]]s we have that solutions exist for all <math>t</math> and are unique, given <math>y^k(0)</math> and <math>{y^k}'(0)</math>, for all <math>k</math>. | |||
==Examples== | |||
Consider a geodesic <math>\gamma(t)</math> with parallel orthonormal frame <math>e_i(t)</math>, <math>e_1(t)=\dot\gamma(t)/|\dot\gamma|</math>, constructed as above. | |||
* The vector fields along <math>\gamma</math> given by <math>\dot \gamma(t)</math> and <math>t\dot \gamma(t)</math> are Jacobi fields. | |||
* In Euclidean space (as well as for spaces of constant zero [[sectional curvature]]) Jacobi fields are simply those fields linear in <math>t</math>. | |||
*For Riemannian manifolds of constant negative sectional curvature <math>-k^2</math>, any Jacobi field is a linear combination of <math>\dot\gamma(t)</math>, <math>t\dot\gamma(t)</math> and <math>\exp(\pm kt)e_i(t)</math>, where <math>i>1</math>. | |||
*For Riemannian manifolds of constant positive sectional curvature <math>k^2</math>, any Jacobi field is a linear combination of <math>\dot\gamma(t)</math>, <math>t\dot\gamma(t)</math>, <math>\sin(kt)e_i(t)</math> and <math>\cos(kt)e_i(t)</math>, where <math>i>1</math>. | |||
*The restriction of a [[Killing vector field]] to a geodesic is a Jacobi field in any Riemannian manifold. | |||
*The Jacobi fields correspond to the geodesics on the [[tangent bundle]] (with respect to the metric on <math>TM</math> induced by the metric on <math>M</math>). | |||
==See also== | |||
* [[conjugate points]] | |||
* [[Geodesic deviation equation]] | |||
* [[Rauch comparison theorem]] | |||
* [[N-Jacobi field]] | |||
==References== | |||
*[do Carmo] M. P. do Carmo, ''Riemannian Geometry'', Universitext, 1992. | |||
[[Category:Riemannian geometry]] | |||
[[Category:Equations]] |
Revision as of 16:04, 7 March 2013
In Riemannian geometry, a Jacobi field is a vector field along a geodesic in a Riemannian manifold describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after Carl Jacobi.
Definitions and properties
Jacobi fields can be obtained in the following way: Take a smooth one parameter family of geodesics with , then
is a Jacobi field, and describes the behavior of the geodesics in an infinitesimal neighborhood of a given geodesic .
A vector field J along a geodesic is said to be a Jacobi field if it satisfies the Jacobi equation:
where D denotes the covariant derivative with respect to the Levi-Civita connection, R the Riemann curvature tensor, the tangent vector field, and t is the parameter of the geodesic. On a complete Riemannian manifold, for any Jacobi field there is a family of geodesics describing the field (as in the preceding paragraph).
The Jacobi equation is a linear, second order ordinary differential equation; in particular, values of and at one point of uniquely determine the Jacobi field. Furthermore, the set of Jacobi fields along a given geodesic forms a real vector space of dimension twice the dimension of the manifold.
As trivial examples of Jacobi fields one can consider and . These correspond respectively to the following families of reparametrisations: and .
Any Jacobi field can be represented in a unique way as a sum , where is a linear combination of trivial Jacobi fields and is orthogonal to , for all . The field then corresponds to the same variation of geodesics as , only with changed parameterizations.
Motivating example
On a sphere, the geodesics through the North pole are great circles. Consider two such geodesics and with natural parameter, , separated by an angle . The geodesic distance
is
Computing this requires knowing the geodesics. The most interesting information is just that
Instead, we can consider the derivative with respect to at :
Notice that we still detect the intersection of the geodesics at . Notice further that to calculate this derivative we do not actually need to know
rather, all we need do is solve the equation
for some given initial data.
Jacobi fields give a natural generalization of this phenomenon to arbitrary Riemannian manifolds.
Solving the Jacobi equation
Let and complete this to get an orthonormal basis at . Parallel transport it to get a basis all along . This gives an orthonormal basis with . The Jacobi field can be written in co-ordinates in terms of this basis as and thus
and the Jacobi equation can be rewritten as a system
for each . This way we get a linear ordinary differential equation (ODE). Since this ODE has smooth coefficients we have that solutions exist for all and are unique, given and , for all .
Examples
Consider a geodesic with parallel orthonormal frame , , constructed as above.
- The vector fields along given by and are Jacobi fields.
- In Euclidean space (as well as for spaces of constant zero sectional curvature) Jacobi fields are simply those fields linear in .
- For Riemannian manifolds of constant negative sectional curvature , any Jacobi field is a linear combination of , and , where .
- For Riemannian manifolds of constant positive sectional curvature , any Jacobi field is a linear combination of , , and , where .
- The restriction of a Killing vector field to a geodesic is a Jacobi field in any Riemannian manifold.
- The Jacobi fields correspond to the geodesics on the tangent bundle (with respect to the metric on induced by the metric on ).
See also
References
- [do Carmo] M. P. do Carmo, Riemannian Geometry, Universitext, 1992.